Severe weather events drive global insured catastrophe losses of USD 42 billion in first half of 2021
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Bevere, Lucia</dc:creator>
<dc:creator>Holzheu, Thomas</dc:creator>
<dc:creator>Fan, Irina</dc:creator>
<dc:creator>Swiss Re Institute</dc:creator>
<dc:date>2021</dc:date>
<dc:description xml:lang="es">Sumario: A deep winter freeze, hailstorms and wildfires contributed to natural catastrophe losses of USD 40 billion in the first half of 2021, according to Swiss Re Institute's preliminary sigma estimates.1 This is above the previous ten-year average of USD 33 billion and the second highest on record for a first half after 2011, when major earthquakes in Japan and New Zealand pushed the six-month total to USD 104 billion. Man-made disasters triggered another estimated USD 2 billion of insured losses in the first half this year, less than usual and likely reflecting remaining COVID-19 restrictions</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/176878.do</dc:identifier>
<dc:language>eng</dc:language>
<dc:publisher>Swiss Re Institute</dc:publisher>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Seguro de riesgos extraordinarios</dc:subject>
<dc:subject xml:lang="es">Pérdidas</dc:subject>
<dc:subject xml:lang="es">Reclamaciones</dc:subject>
<dc:subject xml:lang="es">Mercado de seguros</dc:subject>
<dc:subject xml:lang="es">Perspectivas del seguro</dc:subject>
<dc:subject xml:lang="es">Catástrofes naturales</dc:subject>
<dc:type xml:lang="es">Books</dc:type>
<dc:title xml:lang="es">Severe weather events drive global insured catastrophe losses of USD 42 billion in first half of 2021 </dc:title>
<dc:format xml:lang="es">3 p.</dc:format>
</rdf:Description>
</rdf:RDF>