Search

Robust estimates of insurance misrepresentation through kernel quantile regression mixtures

Recurso electrónico / Electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20210028137
003  MAP
005  20220911211005.0
008  210929e2021 esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎21
100  ‎$0‎MAPA20170005766‎$a‎Li, Hong
24510‎$a‎Robust estimates of insurance misrepresentation through kernel quantile regression mixtures‎$c‎Hong Li, Qifan Song, Jianxi Su
520  ‎$a‎This paper pertains to a class of nonparametric methods for studying the misrepresentation issue in insurance applications. For this purpose, mixture models based on quantile regression in reproducing kernel Hilbert spaces are employed. Compared with the existing parametric approaches, the proposed framework features a more flexible statistics structure which could alleviate the risk of model misspecification, and is in the meantime more robust to outliers in the data. The proposed framework can not only estimate the prevalence of misrepresentation in the data, but also help identify the most suspicious individuals for the validation purpose. Through embedding state-of-the-art machine learning techniques, we present a novel statistics procedure to efficiently estimate the proposed misrepresentation model in the presence of massive data. The proposed methodology is applied to study the Medical Expenditure Panel Survey data, and a significant degree of misrepresentation activity is found on the self-reported insurance status.
650 4‎$0‎MAPA20080590567‎$a‎Empresas de seguros
650 4‎$0‎MAPA20080586294‎$a‎Mercado de seguros
650 4‎$0‎MAPA20080586546‎$a‎Nuevas tecnologías
650 4‎$0‎MAPA20140022717‎$a‎Big data
7001 ‎$0‎MAPA20210032844‎$a‎Song, Qifan
7001 ‎$0‎MAPA20170002697‎$a‎Su, Jianxi
7730 ‎$w‎MAP20077000727‎$t‎The Journal of risk and insurance‎$d‎Nueva York : The American Risk and Insurance Association, 1964-‎$x‎0022-4367‎$g‎01/09/2021 Volumen 88 Número 3 - septiembre 2021 , p. 625-663
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%0A%0A%5Banote%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%5D%0A%0AGracias