Search

Estimating extreme cancellation rates in life insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210034602</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20211201110747.0</controlfield>
    <controlfield tag="008">211201e20211201esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">341</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Estimating extreme cancellation rates in life insurance</subfield>
      <subfield code="c">Francesca Biagini,...[et.al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper assesses the risk of a mass lapse event in life insurance. The rarity of the event and the complexity of policyholder behavior make the risk assessment of such a scenario difficult. Using a simulation study, we evaluate how different estimation methods can assess the risk of this scenario, using panel data at the company level. We then use the best-performing method to estimate the probability distribution function of a mass cancellation event in the United States and Germany. We identify dependencies of the event on company and country characteristics, which have not been taken into account by regulating agencies. We also find that the current mass lapse scenario in Solvency II has no empirical foundation for the German market. We show that an empirically valid scenario leads to a significantly lower solvency capital requirement for the average German life insurer.

</subfield>
    </datafield>
    <datafield tag="540" ind1=" " ind2=" ">
      <subfield code="a">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY 4.0)"</subfield>
      <subfield code="f"/>
      <subfield code="u">https://creativecommons.org/licenses/by/4.0</subfield>
      <subfield code="9">43</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080570590</subfield>
      <subfield code="a">Seguro de vida</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564254</subfield>
      <subfield code="a">Solvencia II</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080601522</subfield>
      <subfield code="a">Evaluación de riesgos</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110008055</subfield>
      <subfield code="a">Biagini, Francesca</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="g">01/12/2021 Volumen 88 Número 4 - diciembre 2021 , p. 971-1000</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="q">application/pdf</subfield>
      <subfield code="w">1309</subfield>
      <subfield code="y">Recurso electrónico / Electronic resource</subfield>
    </datafield>
  </record>
</collection>