Insurance valuation: a two-step generalised regression approach
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220003094</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220131113604.0</controlfield>
<controlfield tag="008">220131e20220103esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20190008730</subfield>
<subfield code="a">Barigou, Karim</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Insurance valuation: a two-step generalised regression approach</subfield>
<subfield code="c">Karim Barigou, Valeria Bignozzi, Andreas Tsanakas</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Current approaches to fair valuation in insurance often follow a two-step approach, combining quadratic hedging with application of a risk measure on the residual liability, to obtain a cost-of-capital margin. In such approaches, the preferences represented by the regulatory risk measure are not reflected in the hedging process. We address this issue by an alternative two-step hedging procedure, based on generalised regression arguments, which leads to portfolios that are neutral with respect to a risk measure, such as Value-at-Risk or the expectile. First, a portfolio of traded assets aimed at replicating the liability is determined by local quadratic hedging. Second, the residual liability is hedged using an alternative objective function. The risk margin is then defined as the cost of the capital required to hedge the residual liability. In the case quantile regression is used in the second step, yearly solvency constraints are naturally satisfied; furthermore, the portfolio is a risk minimiser among all hedging portfolios that satisfy such constraints. We present a neural network algorithm for the valuation and hedging of insurance liabilities based on a backward iterations scheme. The algorithm is fairly general and easily applicable, as it only requires simulated paths of risk drivers.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080564254</subfield>
<subfield code="a">Solvencia II</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080604394</subfield>
<subfield code="a">Valoración de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080568221</subfield>
<subfield code="a">Capital riesgo</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20160015379</subfield>
<subfield code="a">Bignozzi, Valeria</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20130016566</subfield>
<subfield code="a">Tsanakas, Andreas</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="g">03/01/2022 Volumen 52 Número 1 - enero 2022 , p. 211-245</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
</datafield>
</record>
</collection>