Search

Optimal implementation delay of taxation with trade-off for spectrally negative Lévy risk processes

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220007252</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220301101546.0</controlfield>
    <controlfield tag="008">220301e20210607esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220002226</subfield>
      <subfield code="a">Wang, Wenyuan</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Optimal implementation delay of taxation with trade-off for spectrally negative Lévy risk processes</subfield>
      <subfield code="c">Wenyuan Wang, Xueyuan Wu, Cheng Chi </subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper we consider two cases of optimal implementation delay of taxation with trade-off under spectrally negative Lévy insurance risk processes. In the first case, we assume that the insurance company starts to pay tax only when its surplus level reaches a certain level, and at the termination time of the business there is a terminal value incurred to the company. A method is developed to determine the optimal starting-tax surplus level at which the total expected discounted value of all tax payments up to the termination time plus the discounted terminal value is maximized. In the second case, the company still pays tax subject to a starting-tax surplus level, but with capital injections to prevent bankruptcy. The total expected discounted value of tax payments minus the total discounted capital injection costs is maximized to determine the optimal starting-tax surplus level. Numerical examples are given at the end to illustrate the existence of positive optimal starting-tax surplus levels for both cases considered in this paper.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080551285</subfield>
      <subfield code="a">Impuestos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080554385</subfield>
      <subfield code="a">Fiscalidad</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150014030</subfield>
      <subfield code="a">Wu, Xueyuan</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220002233</subfield>
      <subfield code="a">Chi , Cheng</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20220007085</subfield>
      <subfield code="t">European Actuarial Journal</subfield>
      <subfield code="d">Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</subfield>
      <subfield code="g">07/06/2021 Volúmen 11 - Número 1 - junio 2021 , p. 285-317</subfield>
    </datafield>
  </record>
</collection>