Worst-Case Valuation of Equity-Linked Products Using Risk-Minimizing Strategies
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220008532</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220315124825.0</controlfield>
<controlfield tag="008">220315e20220307esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20180001314</subfield>
<subfield code="a">Gaillardetz, Patrice</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Worst-Case Valuation of Equity-Linked Products Using Risk-Minimizing Strategies</subfield>
<subfield code="c">Patrice Gaillardetz, Emmanuel Osei Mireku</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The impact of model risk when hedging equity-linked products and other investment guarantees is significant. We propose a model to determine the worst-case value of an equity-linked product through partial hedging. Risk control strategies based on conditional Value at Risk measures are used. The model integrates both mortality and financial risk associated with these products to find the worst-case value. We adopt robust optimization techniques to compute an optimal hedging strategy. To demonstrate versatility of the framework, numerical examples of point-to-point equity-indexed annuities are presented in multinomial lattice dynamics. We compare robustness of the model to super-replicating and quadratic hedging strategies by computing their capital requirements.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080604394</subfield>
<subfield code="a">Valoración de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586454</subfield>
<subfield code="a">Modelos analíticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20220002738</subfield>
<subfield code="a">Osei Mireku, Emmanuel</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">07/03/2022 Tomo 26 Número 1 - 2022 , p. 64-81</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
</record>
</collection>