Search

A recommendation system for car insurance

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>A recommendation system for car insurance</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2020</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We construct a recommendation system for car insurance, to allow agents to optimize up-selling performances, by selecting customers who are most likely to subscribe an additional cover. The originality of our recommendation system is to be suited for the insurance context. While traditional recommendation systems, designed for online platforms (e.g. e-commerce, videos), are constructed on huge datasets and aim to suggest the next best offer, insurance products have specific properties which imply that we must adopt a different approach. Our recommendation system combines the XGBoost algorithm and the Apriori algorithm to choose which customer should be recommended and which cover to recommend, respectively. It has been tested in a pilot phase of around 150 recommendations, which shows that the approach outperforms standard results for similar up-selling campaigns.

</abstract>
<note type="statement of responsibility">Laurent Lesage...[et.al]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080603779">
<topic>Seguro de automóviles</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080573577">
<topic>Recomendaciones</topic>
</subject>
<classification authority="">322</classification>
<relatedItem type="host">
<titleInfo>
<title>European Actuarial Journal</title>
</titleInfo>
<originInfo>
<publisher>Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</publisher>
</originInfo>
<identifier type="local">MAP20220007085</identifier>
<part>
<text>07/12/2020 Volúmen 10 - Número 2 - diciembre 2020 , p. 377-398</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220504</recordCreationDate>
<recordChangeDate encoding="iso8601">20220504104152.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220013222</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>