Search

Multistate health transition modeling using neural networks

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220014113</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220510150246.0</controlfield>
    <controlfield tag="008">220510e20220509esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220004992</subfield>
      <subfield code="a">Wang, Qiqi </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Multistate health transition modeling using neural networks</subfield>
      <subfield code="c">Qiqi Wang, Katja Hanewald, Xiaojun Wang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article proposes a new model that combines a neural network with a generalized linear model (GLM) to estimate and predict health transition intensities. We introduce neural networks to health transition modeling to incorporate socioeconomic and lifestyle factors and to allow for linear and nonlinear links between these variables. We use transfer learning to link the models for different health transitions and improve the model estimation for health transitions with limited data. We apply the model to individual-level data from the Chinese Longitudinal Healthy Longevity Survey from 1998 to 2018. The results show that our model performs better in estimation and prediction than standalone GLM and neural network models. We provide new estimates of the life expectancies for a range of population subgroups. We also describe a wide range of possible applications for further health-related research, including risk prediction using health claim data and mortality prediction based on individual-level mortality data.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20210020971</subfield>
      <subfield code="a">Factores psicosociales</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20110022112</subfield>
      <subfield code="a">Hanewald, Katja</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220005005</subfield>
      <subfield code="a">Wang, Xiaojun</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="g">09/05/2022 Volumen 89 Número 2 - mayo 2022 , p. 475-504</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
    </datafield>
  </record>
</collection>