Phase-type distributions for claim severity regression modeling
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220014984</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220518131118.0</controlfield>
<controlfield tag="008">220518e20220509esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20220005265</subfield>
<subfield code="a">Bladt, Martin</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Phase-type distributions for claim severity regression modeling</subfield>
<subfield code="c">Martin Bladt</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper addresses the task of modeling severity losses using segmentation when the data distribution does not fall into the usual regression frameworks. This situation is not uncommon in lines of business such as third-party liability insurance, where heavy-tails and multimodality often hamper a direct statistical analysis. We propose to use regression models based on phase-type distributions, regressing on their underlying inhomogeneous Markov intensity and using an extension of the expectationmaximization algorithm. These models are interpretable and tractable in terms of multistate processes and generalize the proportional hazards specification when the dimension of the state space is larger than 1. We show that the combination of matrix parameters, inhomogeneity transforms, and covariate information provides flexible regression models that effectively capture the entire distribution of loss severities.
</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY 4.0)"</subfield>
<subfield code="f"/>
<subfield code="u">https://creativecommons.org/licenses/by/4.0</subfield>
<subfield code="9">43</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080593063</subfield>
<subfield code="a">Regresión no lineal</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="g">09/05/2022 Volumen 52 Número 2 - mayo 2022 , p. 417 - 448</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="q">application/pdf</subfield>
<subfield code="w">1115368</subfield>
<subfield code="y">Recurso electrónico / Electronic resource</subfield>
</datafield>
</record>
</collection>