Search

Bounds on Spearman's rho when at least one random variable is discrete

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Bounds on Spearman's rho when at least one random variable is discrete</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220006712">
<namePart>Mesfioui, Mhamed</namePart>
<nameIdentifier>MAPA20220006712</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">che</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Spearman's rho is one of the most popular dependence measures used in practice to describe the association between two random variables. However, in case of at least one random variable being discrete, Spearman's correlations are often bounded and restricted to a sub-interval of [-1,1]. Hence, small positive values of Spearman's rho may actually support a strong positive dependence when getting close to its highest attainable value. Similarly, slight negative values of Spearman's rho can actually mean a strong negative dependence. In this paper, we derive the best-possible upper and lower bounds for Spearman's rho when at least one random variable is discrete. We illustrate the obtained lower and upper bounds in some situations of practical relevance.</abstract>
<note type="statement of responsibility">Mhamed Mesfioui, Pierre Zuyderhoff </note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>European Actuarial Journal</title>
</titleInfo>
<originInfo>
<publisher>Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</publisher>
</originInfo>
<identifier type="local">MAP20220007085</identifier>
<part>
<text>06/06/2022 Volúmen 12 - Número 1 - junio 2022 , p. 321-348</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220701</recordCreationDate>
<recordChangeDate encoding="iso8601">20220701145126.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220019897</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>