Search

Next generation models for portfolio risk management : An approach using financial big data

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220023504</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220914103203.0</controlfield>
    <controlfield tag="008">220914e20220905usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220000314</subfield>
      <subfield code="a">Jung, Kwangmin</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Next generation models for portfolio risk management</subfield>
      <subfield code="b">: An approach using financial big data</subfield>
      <subfield code="c">Kwangmin Jung,Donggyu Kim,Seunghyeon Yu</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper proposes a dynamic process of portfolio risk measurement to address potential information loss. The proposed model takes advantage of financial big data to incorporate out-of-target-portfolio information that may be missed when one considers the value at risk (VaR) measures only from certain assets of the portfolio. We investigate how the curse of dimensionality can be overcome in the use of financial big data and discuss where and when benefits occur from a large number of assets. In this regard, the proposed approach is the first to suggest the use of financial big data to improve the accuracy of risk analysis. We compare the proposed model with benchmark approaches and empirically show that the use of financial big data improves small portfolio risk analysis. Our findings are useful for portfolio managers and financial regulators, who may seek for an innovation to improve the accuracy of portfolio risk estimation.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080585518</subfield>
      <subfield code="a">Gestión de activos</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="g">05/09/2022 Volumen 89 Número 3 - septiembre 2022 , p. 765-787</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
    </datafield>
  </record>
</collection>