Search

Distributionally robust goal-reaching optimization in the presence of background risk

Recurso electrónico / Electronic resource
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20220023740
003  MAP
005  20220915134628.0
008  220915e20220912esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20110012106‎$a‎Chi, Yichun
24510‎$a‎Distributionally robust goal-reaching optimization in the presence of background risk‎$c‎Yichun Chi
520  ‎$a‎In this article, we examine the effect of background risk on portfolio selection and optimal reinsurance design under the criterion of maximizing the probability of reaching a goal. Following the literature, we adopt dependence uncertainty to model the dependence ambiguity between financial risk (or insurable risk) and background risk. Because the goal-reaching objective function is nonconcave, these two problems bring highly unconventional and challenging issues for which classical optimization techniques often fail. Using a quantile formulation method, we derive the optimal solutions explicitly. The results show that the presence of background risk does not alter the shape of the solution but instead changes the parameter value of the solution. Finally, numerical examples are given to illustrate the results and verify the robustness of our solutions.
650 4‎$0‎MAPA20080591182‎$a‎Gerencia de riesgos
650 4‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
7730 ‎$w‎MAP20077000239‎$g‎12/09/2022 Tomo 26 Número 3 - 2022 , p. 351-382‎$x‎1092-0277‎$t‎North American actuarial journal‎$d‎Schaumburg : Society of Actuaries, 1997-