Search

New loss reserve models with persistence effects to forecast trapezoidal losses in run-off triangles

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220026154</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20221004112119.0</controlfield>
    <controlfield tag="008">221004e20220905bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220008587</subfield>
      <subfield code="a">Usman, Farha</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">New loss reserve models with persistence effects to forecast trapezoidal losses in run-off triangles</subfield>
      <subfield code="c">Farha Usman</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Modelling loss reserve data in run-off triangles is challenging due to the complex but unknown dynamics in the claim/loss process. Popular loss reserve models describe the mean process through development year, accident year, and calendar year effects using the analysis of variance and covariance (ANCOVA) models. We propose to include in the mean function the persistence terms in the conditional autoregressive range model for modelling the persistence of claim across development years. In the ANCOVA model, we adopt linear trends for the accident and calendar year effects and a quadratic trend for the development year effect. We investigate linear or log-transformed mean functions and four distributions, namely generalised beta type 2, generalised gamma, Weibull, and exponential extension, with positive support to enhance the model flexibility. The proposed models are implemented using the Bayesian user-friendly package Stan running in the R environment. Results show that the models with log-transformed mean function and persistence terms provide better model fits. Lastly, the best model is applied to forecast partial loss reserve and calendar year reserve for three years.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20100065242</subfield>
      <subfield code="a">Teorema de Bayes</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">05/09/2022 Volumen 52 Número 3 - septiembre 2022 , p. 877-920</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
  </record>
</collection>