Search

Comparativa de los modelos GLM y GBM para la tarificación de una cartera de autos

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cam a22000004b 4500</leader>
    <controlfield tag="001">MAP20220028950</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20221023193630.0</controlfield>
    <controlfield tag="008">211217s2022    esp||||       ||| ||spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220008945</subfield>
      <subfield code="a">Gutiérrez Meléndez, Gonzalo</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Comparativa de los modelos GLM y GBM para la tarificación de una cartera de autos</subfield>
      <subfield code="c">Gonzalo Guitierrez Meléndez</subfield>
    </datafield>
    <datafield tag="260" ind1=" " ind2=" ">
      <subfield code="a">Madrid</subfield>
      <subfield code="b">Universidad Carlos III de Madrid</subfield>
      <subfield code="c">2022</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">172 p.</subfield>
    </datafield>
    <datafield tag="500" ind1=" " ind2=" ">
      <subfield code="a">Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutores: José Miguel Rodríguez-Pardo del Castillo, Jesús Ramón Simón del Potro Curso 2021-2022</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">El sector asegurador se encuentra en una constante evolución en todos los ámbitos gracias especialmente a los avances tecnológicos. En la rama de la tarificación, la búsqueda constante de una mejor modelización del riesgo ha generado la creación y uso de distintos algoritmos para capturar de la manera más eficiente y exacta el riesgo de los clientes. En este estudio, se lleva a cabo la comparativa entre el método clásico de modelización lineal generalizado frente a la nueva corriente de modelos basados en Machine Learning llamados Gradient Boosting. Los resultados obtenidos muestran una mayor capacidad predictiva para el método más novedoso y una mayor granularidad para ajustar las primas de los asegurados. Ambos métodos son válidos de cara al estudio académico, y observando los resultados, todo parece indicar que es el momento de iniciar el cambio utilizando con mayor asiduidad los nuevos modelos de Machine Learning. También se lleva a cabo un análisis de negocio comparando una metodología de mutualización frente a una segmentación en los precios con el fin de mantener la cartera sana económicamente</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080603779</subfield>
      <subfield code="a">Seguro de automóviles</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564322</subfield>
      <subfield code="a">Tarificación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080563448</subfield>
      <subfield code="a">Modelización</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20160001693</subfield>
      <subfield code="a">Modelos GLM</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20210037177</subfield>
      <subfield code="a">Modelos GBM</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20170005476</subfield>
      <subfield code="a">Machine learning</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586331</subfield>
      <subfield code="a">Métodos analíticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080664510</subfield>
      <subfield code="a">Trabajos de investigación</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080637736</subfield>
      <subfield code="a">España</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140014897</subfield>
      <subfield code="a">Rodríguez-Pardo del Castillo, José Miguel</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20160001525</subfield>
      <subfield code="a">Simón del Potro, Jesús Ramón</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20080455026</subfield>
      <subfield code="a">Universidad Carlos III de Madrid</subfield>
    </datafield>
    <datafield tag="830" ind1=" " ind2="0">
      <subfield code="0">MAPA20160014013</subfield>
      <subfield code="a">Trabajos Fin de Master</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="q">application/pdf</subfield>
      <subfield code="w">1117332</subfield>
      <subfield code="y">Recurso electrónico / Electronic resource</subfield>
    </datafield>
  </record>
</collection>