Search

Cyber loss model risk translates to premium mispricing and risk sensitivity

Portada
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20230012376
003  MAP
005  20231214132321.0
008  230612e20230403esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎861
24510‎$a‎Cyber loss model risk translates to premium mispricing and risk sensitivity‎$c‎Gareth W. Peters
520  ‎$a‎In this paper we focus on model risk and risk sensitivity when addressing the insurability of cyber risk. The standard statistical approaches to assessment of insurability and potential mispricing are enhanced in several aspects involving consideration of model risk. Model risk can arise from model uncertainty and parameter uncertainty. We demonstrate how to quantify the effect of model risk in this analysis by incorporating various robust estimators for key model parameters that apply in both marginal and joint cyber risk loss process modelling. Through this analysis we are able to address the question that, to the best of our knowledge, no other study has investigated in the context of cyber risk: is model risk present in cyber risk data, and how does is it translate into premium mispricing? We believe our findings should complement existing studies seeking to explore the insurability of cyber losses
650 4‎$0‎MAPA20140022700‎$a‎Ciberseguridad
650 4‎$0‎MAPA20160007633‎$a‎Ciberriesgos
650 4‎$0‎MAPA20080588953‎$a‎Análisis de riesgos
650 4‎$0‎MAPA20080548575‎$a‎Pérdidas
7730 ‎$w‎MAP20077100215‎$g‎03/04/2023 Volumen 48 Número 2 - abril 2023 , p. 372-433‎$x‎1018-5895‎$t‎Geneva papers on risk and insurance : issues and practice‎$d‎Geneva : The Geneva Association, 1976-
85600‎$y‎MÁS INFORMACIÓN‎$u‎ mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A