Search

On fitting probability distribution to univariate grouped actuarial data with both group mean and relative frequencies

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20230012772</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20231214132428.0</controlfield>
    <controlfield tag="008">230614e20230306esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20230005378</subfield>
      <subfield code="a">Khemka, Gaurav</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">On fitting probability distribution to univariate grouped actuarial data with both group mean and relative frequencies</subfield>
      <subfield code="c">Gaurav Khemka, David Pitt, Jinhui Zhang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article compares the relative performance of three methods of inference using distributions suitable for actuarial applications, particularly those that are right-skewed, heavy-tailed, and left-truncated. We compare the traditional maximum likelihood method, which only considers the group limits and frequency of observations in each group, to two research innovations: a modified maximum likelihood method and a modified generalized method of moments approach, both of which incorporate additional group mean information
in the estimation process. We perform a simulation study where the proposed methods outperform the traditional maximum likelihood method and the maximum entropy when the true underlying distribution is both known and unknown</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080613105</subfield>
      <subfield code="a">Análisis probabilísticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591953</subfield>
      <subfield code="a">Métodos actuariales</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080031732</subfield>
      <subfield code="a">Pitt, David</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20230005385</subfield>
      <subfield code="a">Zhang, Jinhui</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="g">06/03/2023 Tomo 27 Número 1 - 2023 , p. 185-205</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
    </datafield>
    <datafield tag="856" ind1="0" ind2="0">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">
mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A
</subfield>
    </datafield>
  </record>
</collection>