Search

Modelo discreto de transiciones entre estados de dependencia

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000 i 4500</leader>
    <controlfield tag="001">MAP20071508804</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20100531103215.0</controlfield>
    <controlfield tag="007">hzrazu---bucu</controlfield>
    <controlfield tag="008">070529s2004    esp||||    | |00010|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Modelo discreto de transiciones entre estados de dependencia</subfield>
      <subfield code="c">A. Alegre... [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1="8" ind2=" ">
      <subfield code="a">En este trabajo se analiza el modelo markoviano de transiciones anuales entre estados de dependencia asumiendo la hipótesis de estacionariedad. Se suponen conocidas las tasas de mortalidad de la población autónoma y las tasas de prevalencia de los tres estados de dependencia considerados. La indeterminación del modelo se resolverá incorporando restricciones en forma de hipótesis en las interrelaciones, a partir de las cuales se obtienen las matrices de transición por edades y se analiza el comportamiento de las mismas. Se realizan aplicaciones numéricas utilizando distribuciones de mortalidad y de prevalencia que pueden ser adecuadas para la población española y que han surgido de un análisis preliminar. Por último se efectúa un análisis de sensibilidad de los resultados respecto al cambio de hipótesis en las mencionadas interrelaciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080576783</subfield>
      <subfield code="a">Modelo de Markov</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080589004</subfield>
      <subfield code="a">Análisis matemático</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080603786</subfield>
      <subfield code="a">Seguro de dependencia</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080008291</subfield>
      <subfield code="a">Alegre, A.</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20080454739</subfield>
      <subfield code="a">Instituto de Actuarios Españoles</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20070000012</subfield>
      <subfield code="t">Anales del Instituto de Actuarios Españoles : Colegio Profesional</subfield>
      <subfield code="d">Madrid : Instituto de Actuarios Españoles, 1943-</subfield>
      <subfield code="g">Número 10 3ª Época  - 2004, p. 91-114</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="q">application/pdf</subfield>
      <subfield code="w">1028721</subfield>
      <subfield code="y">Recurso electrónico / electronic resource</subfield>
    </datafield>
  </record>
</collection>