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Abstract

Projecting and understanding longevity has always been a major concern for both de-

mographers and insurance companies. Having reliable projections of the mortality pat-

terns at a country level allows governments to structure their pension schemes and public

healthcare policies, and at a sample level, assists companies with the pricing of their life-

insurance products as well as with the calculation of their Solvency Capital Requirement

(SCR). Understanding mortality at a company level is not an easy task, due to the lack

of a large series of data, the most common mortality projection models can not be ap-

plied. This is the reason why insurers make use of more pragmatic approaches, generally

at the cost of imposing safety margins on their estimations and overestimating death

probabilities, which results in a higher cost of solvency capital and lower profitability

for the business at hand. This document aims to explore a way in which population

mortality models can be adapted to forecast the behavior of the insured population

introducing a correction in the forecast of the general population that stems from the

modelization of the differences between the two aforementioned groups.
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Chapter 1

Introduction

Predicting and studying the evolution of demographic variables, is a problem of paramount

importance for both the private and the public sector. Being able to understand the

size, status and behavior of populations is a determining factor when formulating both

public policies and business plans. The age structure at different points in time is an

element of special interest in the insurance and pensions industry. It is important to

study not only how population size at each age has behaved in the past, but also how it

will behave in the future, to make predictions that allow taking decisions based on future

expectations. The most important variables underlying the composition of the popula-

tion pyramid are the birth and mortality rates at every age. This research document

focuses on the latter.

Mortality, being the measure of deaths in a population, serves as the counterbalance

to fecundity. To visualize mortality and fecundity within a population, demographers

create life tables to display age-specific statistical summaries of a population’s survival

patterns. Structuring life actuarial products depends on the evolution of said patterns.

Mortality evolution is uncertain, this transforms insurance payments and their benefits

into random variables that need to be understood, studied and forecasted. The improve-

ment of mortality rates in the past decades represents a benefit for the human species,

while simultaneously creating a challenge for the governments and the private sector

when designing and maintaining support systems for the elderly, such as healthcare and

pension provisions.

1
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To be able to correctly execute the pricing and reserving of actuarial life contracts, in

some cases, the insurance industry and the legislation that ensures the insurer’s solvency,

requires forecasts up to 50 years ahead. Patterns of human mortality so far away in time

depend on unknown factors such as the evolution of healthcare systems, the appearance

of viruses and pandemics, the occurrence of natural disasters, among others. Taking

these elements into consideration when predicting the behavior of mortality is a task

of extreme difficulty, as it involves predicting the behavior of a random variable using

other random unknown variables as explanatory factors. Hence, the most common

techniques for forecasting future mortality, revolve around making use of historical data

to extrapolate past trends.

Several methods have been developed for forecasting. Probably one of the most used for-

mulations in the actuarial realm is the two-factor Lee-Carter model (1992). This simple

model sets the observed log mortality rate as the dependent variable while reducing the

time-dependent component of mortality to a single index that is fitted by ordinary least

squares (OLS) and then forecasts it using time series methods. Some other extensions

on the Lee-Carter model such as the one proposed by Renshaw and Haberman [2006],

take into account cohort effects as well as age-specific period effects. Other approaches,

such as the one by Bell and Monsell [1991] use a principal component analysis to include

higher-order effects, which results in an improvement of the fit within the sample.

Moreover, Bell [1997] compares the goodness to fit of several methods, among them:

fitting parametric curves to age-specific rates and the use of principal components to

obtain a linear transformation of the data organized according to a simplified structure.

He finds that in terms of forecasts, the most accurate procedure is to apply a simple

random walk model with a drift to the rates for each age separately. A very successful

extension, which produces highly accurate forecasts, was proposed by Cairns et al. [2006]

Also known as the CBD model, their approach aims to describe the future evolution of

longevity risk, by including two main factors. Firstly, one that affects equally mortality

rates at all ages. Secondly, one that affects at a larger extent mortality at higher ages.

Finally, some non-parametric approaches have also been developed. The most notorious

work in this matter was developed by Currie et al. [2004]. They use a penalized gener-

alized linear model with Poisson errors to build a regression and penalty matrices, that

are later used for smoothing and forecasting two-dimensional mortality tables. This last
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approach, along with other relevant models (parametric and non-parametric), will be

further discussed in the literature review chapter.

As discussed earlier, understanding and forecasting mortality rates is a subject of interest

for both the public and the private sector. The public sector has an easier job at hand

when it comes to modeling and predicting, as they are able to get robust estimates based

on very long and large sets of panel data made available to them by the national statistics

agencies. On the other hand, the task is somewhat more challenging for insurance

companies as they usually do not possess data sets for more than a couple of years

and with a relatively small number of observations at best. The situation is even more

challenging if the products are new and there are no data points to characterize the

insured population in a reliable manner.

The discrepancies between the behavior of the general and insured population are not a

trivial matter. It has been shown in several studies that there are statistically significant

differences in the mortality rates of both groups. These arise as a consequence of the

industry’s extensive underwriting process, which has the tendency of cream skimming

risks by insuring individuals that are generally in much better health than the average

citizen within the general population. It is also the case, that policyholders in the insured

population tend to have a higher socio-economic status which grants access to better

health care and living conditions, which results in a longer lifespan. A comparison

between the general and the insured population mortality carried out in Mexico by

Ornelas and Guillen [2013], showed that ”Members of the insured subpopulation are

believed to invest more in prevention, resulting in their presenting lower mortality rates

than those of the general population for the same age and gender groups.”

As a result of the significance of the differences between both populations, along with the

lack of data at the insurer’s level to make a robust forecast, a method of integrating both

sources of information needs to be considered. Therefore, once the in-sample general

population mortality has been modeled and the indicators for future years have been

forecasted, it is necessary to make certain adjustments so that the forecasts based on the

general population adjust better to those of the insured population. The challenge is to

find a way to include the scarce information about the insured population into the general

population forecasts, so that they can be somewhat tailored to the past experience of

the company and are more appropriate to make calculations for the contracts at hand.
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1.1 Motivation

To guarantee the profitability and solvency of the insurance contracts, companies need

to be able to forecast in a reliable way the random variables that give the products

they commercialize their stochastic nature. In the case of the life insurance business, a

trustworthy prediction of the mortality rates will result in a truthful prediction of the

claim sizes, allowing the insurer a better control of their business as well as providing

finer tools for profitability analysis. Moreover, the regulators are also interested in the

capability of the companies to make use of reliable models so that their solvency is

guaranteed at a grater confidence level via the capital requirements.

The need for better forecasting tools is evident, the problem arises when in reality the

data that reflects the insurer’s experience and helps characterize the insured population

is not sufficient to make a robust estimation. As discussed earlier, there are significant

differences between the mortality of the general and insured population, so that forecasts

based solely on the general public are not adequate. Arising from this problem, the need

to integrate the information coming both from the general and the insurer’s experience

appears as conspicuous. Using the mortality data of the country’s statistical agencies is

useful for creating a solid estimation for the yearly death rates, for each age group, within

the specific geographic area. Then, the data reflecting the insurer’s experience can be

used to introduce a correction factor that reconciles the future population forecasts with

the experience of the industry.

1.2 Objectives

Once the importance of the task at hand has been understood, the main objectives of

this work will be discussed. This document aims to study the problem of incorporating

sample and population information together and to develop a procedure so that this

process can be done in the most accurate manner possible. To do so, four main research

questions will be considered:

1. What would be an optimal methodology to produce an in-sample fit of the yearly

population mortality rates by age?



Chapter 1 - Introduction 5

2. What methodology produces the most accurate forecast of the yearly population

mortality rates by age?

3. What would be a way to incorporate the insurer’s experience to improve the fore-

cast of the population mortality?

4. How does the use of corrected mortality estimates compare to the use of the ones

calculated with the general population?

After resolving these questions, the goal is to have a good understanding of what the

process of incorporating sample and population data requires, and to develop a method-

ology that is straightforward yet sound so that it is at the disposition of the companies

for accurately executing their mortality forecasts.

1.3 Brief Description of the Document

In the second chapter, a literature review will be carried out. It will focus around revising

some of the most prominent models for in-sample fitting and forecasting, pointing out

their advantages and difficulties from both a theoretical and practical point of view.

Later, this section will also explore how the insured population’s mortality patterns are

forecasted within the insurance industry. It will focus on the goodness to fit of the

forecasts as well as the practical implications of said approaches.

Later on, in the third chapter, the data set will be introduced. To be able to revise the

accuracy of the model proposed, the mortality estimates will be constructed incorpo-

rating the historical data from an insurance company. Some of the main aspects of the

databases for both the population and the insurer’s sample will be discussed. The focus

will mainly revolve around the collection methods and the traceability of the final data.

Moreover, this chapter will also discuss preliminary hypotheses and the expected results

before performing the numerical analysis.

The fourth chapter will focus mainly on the model and methodology behind the in-

tegration of the population and sample data once the best in-sample fitting and later

forecasting method have been chosen. Based on the existing literature a model will be

formulated, applied and tested. Finally, in the fifth and sixth chapters, the results of
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the numerical analysis will be presented and the conclusions will be drawn along with

the answers to the research questions aforementioned.

1.4 Summarized Findings and Conclusions

In general terms, the findings of this research can be synthesized as follows:

1. For the particular data-set employed to perform the population-level analysis, all

the models employed (The Lee-Carter, CBD, and P-splines) result in a good in-

sample fit that explains more than 90% of the data variation in all cases when

applied individually.

2. For the population data-set at hand, the forecast with the three models and their

combinations is also accurate predicting in all cases more than 96% of the data

behavior when employing a 10/90 back-testing method on the individual models.

3. Despite the small data-set available at the insured population level, the method-

ology proposed to correct the population mortality forecast, so that its pattern

resembles the one experienced by the insurance company, proves to be satisfac-

tory. The modelization of the differences between the common data points for

both samples appears to be a proper tool to generate reliable population-level

forecasts.

4. In general, it is difficult to model and forecast the insured population on its own

due to the short span these time series usually have. By implementing the model

suggested in this document, it is possible to take advantage of the larger extension

of the population-level data and pool the accuracy of the forecasts stemming from

those longer series to generate a reasonable and reliable forecast at the sample-

level.



Chapter 2

Literature Review

As mentioned in the first chapter, both the in-sample fitting and forecasting of the mor-

tality rates, along with the ways of ameliorating population forecasts with information

from the insurer’s experience, are crucial problems within the life-insurance business.

Due to their significance, these topics have appealed to the interest of many researchers

and have been amply studied by academics in both the actuarial and demographic dis-

ciplines. Earlier, during the introductory section, the state of the art for the in-sample

fitting and mortality forecasting has been discussed. In the first section of this chapter,

three of the most influential models for this purpose will be discussed. Their benefits

and detriments will be analyzed and finally, according to the conclusions drawn from

this analysis, the best model for in-sample fitting and forecasting will be selected. Sub-

sequently, in the second section of this chapter, some methods for incorporating together

sample and population information will be discussed. It is important to note that this

last inquiry, albeit important, has not been sufficiently studied. Here the main existing

methodologies used within the insurance industry will be briefly introduced, while the

chosen model will be further explained and developed during the fourth chapter.

2.1 Models for in-sample fitting and forecasting

2.1.1 The Lee-Carter Model

The focus of this model revolves around extrapolating mortality trends without incor-

porating knowledge about medical, behavioral or social influences on mortality change.

7
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Unlike previous methods, the Lee-Carter model does not put a limit to the gains in life

expectancy, allowing death rates to decline exponentially. This feature is an advantage,

as a more realistic forecast mortality trends can be obtained and there is no need to

artificially impose the deceleration of gains in life expectancy.

In their paper, the authors work with annual age-specific death rates for the US pop-

ulation from 1900 to 1987. They forecast and fit mortality for the whole population,

without differentiating between sexes, they also work with yearly data grouped in five-

year age intervals. When analyzing the quality of the data, they point out that mortality

measures at older ages are less reliable. This occurs as a consequence of sample size di-

minishing substantially for such age groups. Regardless of this issue, the largest gains

in life expectancy are expected (from data experience) to occur at older ages. Meaning

that there is a need for older age groups to be treated in an especially careful manner.

The main purpose of the authors is to derive a parsimonious model that captures the

predominant outlines of the mortality pattern through the variations in time of a single

parameter. To have a better understanding of the ”raw” mortality change, patterns

that diverge from the long-run trends (such as changes in mortality due to historical

circumstances) are not captured by the model. The movements of the mortality rate

are described by the following equations:

ln(m(x, t)) = ax + bxkt + εx,t

m(x, t) = eax+bxkt+εx,t
(2.1)

Where m(x, t) represents the central mortality rate for age x in year t, kt is a time-

varying index of the level of mortality, bx is a constant that indicates which rates of

mortality decline faster or slower with respect to changes in kt. In other words:

kt =
∂ln(m(x, t))

∂t
=
bx∂kt
∂t

(2.2)

In principle, bx could be negative for some ages (meaning that mortality rises at those

ages while decreasing at others). Nonetheless, this is not the case seen in practice over

the long run. Moreover, if kt is a linear function of time, it means that mortality at each

age changes at its own constant and exponential rate. As kt approaches −∞, the death

rate goes to zero, meaning that negative death rates can’t be an outcome of the model.
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The error term, εx,t has mean 0 and variance σ2. This term reflects particular age-

specific historical influences that, as mentioned earlier, are not captured by the model.

The model allows deriving a one-parameter family of life tables from two observed life

tables by expressing death rates as a function of k rather instead of time. Therefore, for

any value of k, a set of central death rates is defined, hence it is possible to obtain a life

table.

The authors also mention the possibility to work inversely, by finding analytically, the

given set of life tables in a family that result in an observed number of deaths, D(t),

given a population age distribution, N(x, t). In other words, finding the values of k(t)

so that:

D(t) =
∑

[N(x, t)]eax+bxkt (2.3)

As they are estimations, the original least-squares solutions for k(t), ax and bx do not

result in life tables that imply the exact observed historical death rates observed for the

population age distributions. Nonetheless, the differences between the estimates and the

real data can be eliminated by keeping the estimated values of ax and bx and calculating

k(t) according to equation 2.3. Moreover, for periods in which the age-specific rates are

unknown, despite population age distributions and the total number of deaths being

available; the model can be calibrated with the aid of equation 2.3. Hence, in cases

where there is a difference between the years of publication of total deaths and age-

specific death rates, the forecast can still be done, using for its base year the last period

for which total deaths are known.

When forecasting, the method proposed by Lee and Carter does not predict each age-

specific rate independently. By doing joint predictions, it avoids calculating n(n−1)
2

covariances of errors that are later needed to find the confidence intervals (when n age

groups are considered). Instead, the forecasting method makes use of the high level of

inter-temporal correlation across ages by making the death rates dependant on a time-

changing parameter. The variances and covariances of the death rate functions follow

an ARIMA model for k(t). The model for each k(t) is correct if each death rate is well

explained by a random walk with drift.

A downside of this methodology is that the forecasts can only fit historical data, so

if the realized mortality rates were unlikely when looking at the historical data, the
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model will not be able to predict them. Another important aspect is that k(t) is fitted

as a single parameter, so it resumes all the movements for the individual age-specific

rates. Meaning that the forecast would be different if each age-specific rate was modeled

independently.

The model fitting finds the minimum least squares solution to equation 2.1, for a given

matrix of death rates, mx,t. Since the procedure does not yield a single solution, some

additional conditions are set:

X∑
x=0

bx = 1

′∑
t=0

bt = 0

(2.4)

The previous conditions imply that ax is an additive constant, equal to the average of

the logarithm of the mortality rate, ln(mx,t).

Since kt is unknown, the model can not be fitted using ordinary methods. Therefore, the

Singular Value Decomposition (SVD) method is used to find a solution to the minimum

least-squares problem. Moreover, the procedure results in fitted values that correspond

to the minimized error of the logarithms of the death rates. Afterwards, kt needs to be

re-estimated in a second step using the model equation 2.1 taking now the vectors for

ax and bx found form the SVD as given. The re-estimation on the second step ensures

that each year given a population-age distribution, the implied and actual number of

deaths are the same.

The authors call attention to the fact that the data available for death rates are divided

by age groups of four years represents a problem. The last age group is 85 and over,

which is not useful since the interest of the forecast revolves around higher ages as well.

Not taking into account the population distribution for these ages leads to distortions in

the predictions. To divide the death rates in this interval up to the age group 105-109,

the method suggested by Coale and Guo [1989] is used. They use they assume that

mortality rates increase at a linearly decreasing rate with age (Unlike the traditional

Gompertz curve that assumes it occurs at a constant rate). Furthermore, the logarithm

of the mortality rate ratio 5mx
5mx−5

is assumed to decline by a constant increment as x

rises above 80. The decline in the increase of mortality from a five-year interval to the
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next is noted as R and is found based on the following equation:

ln

(
5m105

5m75

)
= 6k80 − 15R (2.5)

Where k80 = 5m80

5m75
, k85 = k80 − R, k90 = k80 − 2R and so on. To find a solution, an

arbitrarily high value is assigned to 5m105 which ensures that only two percent of the

population reaching 105 years of age survive to the age of 110. Based on these solutions,

it is also possible to find the mortality rates up to the age interval 105-110.

Regarding the in-sample fit, Lee and Carter find a linear decreasing pattern to describe

Kt. The variable declined at a similar pace across all the sample. The short term

fluctuations are not that large across the modeled series, so Kt has rather constant

variance. Additionally, the fit for most of the age groups for the logarithm of the

mortality rate (the mortality rate), is good when compared to the logarithm of actual

death rates (the actual death rates), except for ages 20-24. The error for this age segment

is low relative to the others, so it doesn’t impact the life expectancy forecast a lot. All

in all, the fit of the model in-sample is exceptionally good. It is relevant to note that

the advantage of forecasting death rates instead of life expectancy directly, is that kt is

linear with respect to time, while life expectancy is not.

Finally, the forecast of the mortality index, kt, is done using an ARIMA time series

model. The authors find (via the Box-Jenkins method) that kt is better described as

a random walk with drift. To decrease the width of the confidence intervals for the

forecasted variable, events that increase mortality way beyond its normal values such as

the influenza epidemic of 1918 are treated as anomalies utilizing an intervention model

that uses a dummy variable for this event, removing its influence.

Forecasts of the 95% confidence interval based on a model based on the whole period and

another model fitted with data between 1933-1989 are similar both in expected values

and in confidence bands, which somewhat proves the structural homogeneity of the later

period. A small investigation on how the base period affects the forecasts shows that

fitted models and forecasts display a certain degree of instability when the base period

is reduced to 10 or 20 years. Hence, it becomes evident that it is better to use longer

base periods to forecast, as they are more stable than shorter ones. In general, when the

quality of the forecast is evaluated employing back-testing it proves to be successful.
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All in all, the Lee-Carter model is very useful as it provides a very good in-sample

fit as well as an adequate forecast when evaluated with the 95% confidence level. It

extrapolates mortality trends without artificially imposing the deceleration of gains in

life expectancy, making them more realistic. The model does not rely on unknown factors

to explain mortality, decreasing the likelihood of omitting variables. Moreover, it does

not predict each age-specific rate independently, which allows it to take advantage of the

high level of inter-temporal correlation across ages. Finally, by forecasting death rates

instead of life expectancy, it exploits the advantage of kt being is linear with respect to

time.

Regarding the disadvantages, it is important to note that mortality measures at older

ages are less reliable, as a consequence of a smaller sample size for such age groups. Addi-

tionally, only the predominant outlines of the mortality pattern are captured. Therefore,

changes that diverge from the long-run trends are not captured. As a consequence, the

parsimonious model is not able to predict realizations of the mortality rate that seemed

unlikely when looking at the historical data. Furthermore, the quality of the forecast is

affected when shorter base periods used for fitting.

2.1.2 The CBD model

Another model to fit and forecast mortality trends is the one proposed by Andrew Cairns,

David Blake, and Kevin Dowd 2006, also known as the CBD model due to its authors’

initials. Their paper sketches a two factor stochastic model for mortality improvements,

also known as longevity risk. The first factor affects mortality rates equally across all

ages, while the second factor affects mortality at higher ages more. Larger effects for

older individuals make sense, just as Lee-Carter mention, because the historical data

shows that longevity improvements are higher at older ages in comparison to younger

ones.

To assess the longevity risk, the paper analyzes the pricing of longevity bonds with

different terms to maturity referenced to different cohorts. These bonds allow companies

to hedge longevity risks. Said bonds have coupons that vary according to a given survivor

index. The more individuals form a specific age group die every year, the lower the

coupon payment (this scheme makes sense as the company only needs to make payments

to those who remain alive). The methodology review here will not focus on the bonds,
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it will be centered around the mortality fitting and forecasting. Altogether, the authors’

main finding is that the longevity risk for shorter time horizons is lower, while for longer

periods (more than 10 years) it increases significantly.

Death rates evolve in a stochastic manner, historical data exhibits some unpredictable

improvements in mortality, which appear to be more significant at higher ages. Under-

standing longevity is of crucial importance for policy purposes, social security planning

and structuring and underwriting insurance contracts. There is a need to have an ac-

curate estimate of how much people will live so that the contracts and public policies

are built based on expectations that are aligned with reality. This allows public systems

to be solvent (e.g. pensions) and also for companies not to have to use up their profit

margins to cover for unexpected demographic events.

The paper identifies three main types of mortality risk that life insurers and annuity

providers are exposed to:

1. Mortality risk: Related to uncertainty about the movements (in any direction)

of the mortality rates.

2. Longevity risk: Related to the long term survival rates being in reality higher

than expected.

3. Short-term, catastrophic mortality risk: It happens if, over short periods,

mortality rates differ significantly from their normal levels (according to experi-

ence). It is expected, for these mortality shocks to be transitory so that the rates

return to normal after it has passed.

Several approaches have been contemplated for modeling the randomness in aggregate

mortality rates through time. Influenced by the Lee-Carter model as well as some

other works in the literature, Cairns et al. work in discrete time with annual aggregate

mortality rates. Likewise, they use time series models to capture the random elements

present in the stochastic development of the mortality rates. As mentioned earlier, the

authors introduce a two-factor model. From the data, it is seen that the two factors are

successful in modeling historical mortality trends at different ages. Besides, The model

allows simulating longevity risk employing cohort survival rates.
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The model is defined by the following equation:

p(t, T0, T1, x) = p[I(T1) = 1|I(T0) = 1, µt] (2.6)

Where the forward survival probabilities, p(t, T0, T1, x), represent the probability at time

t that a person of age x at time zero and still alive at T0, survives until time T1 > T0.

I(u) corresponds to an indicator function equal to 1 if when t = µ the individual of age x

is alive and is equal to 0 if not. Finally, µu refers to the evolution of the mortality curve

up to t = u. The observed period coincides with the interval (T0, T1]. Therefore, ∀t ≥ T1

there is no uncertainty. In other words, when p(t, T0, T1, x) = p(t = T1, T0, T1, x).

The model for the mortality curve is outlined by:

q̃(t, x) + 1− p̃(t, x) = 1− p(t+ 1, t, t+ 1, x) =
eA1(t+1)+A2(t+1)(x+t)

1 + eA1(t+1)+A2(t+1)(x+t)
(2.7)

Here, p̃(t, x) is the realized survival probability for the cohort of age x at time 0. By

analogy, q̃(t, x) represents the realized mortality rate. Additionally, A1(u) and A2(u)

are stochastic processes at time t = u and whose values are estimated from the data

applying minimum least squares to equation 2.7. Unlike some other simpler curves, the

fit for this parametric model is outstanding, especially at higher ages.

To perform the in-sample fit, the authors use mortality data for England and Wales from

1961 to 2002. After finding the estimated values, they observe that A1(u) is downward

sloping, meaning improvement of mortality over the years. They also see that A2(u) is

upward sloping, which confirms the hypothesis that mortality improvements are greater

at higher ages as the curve gets steeper over time. To forecast A1(u) and A2(u) (A(t)

in general) they model them as two dimensional random walks with drift ass seen un

equation 2.8:

A(t+ 1) = A(t) + ϑ+ CZ(t+ 1) (2.8)

Where ϑ and C are a constant 2x1 vector and constant 2x2 upper triangular matrix

respectively, while Z(t) is a two dimensional standard normal random variable.

A criterion for evaluating a model’s fit is to analyze if it is biologically reasonable,

meaning that the model is in line with how experts think mortality rates evolve during
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time1. After fitting the data, when analyzing the vector for ϑ, since ϑ1 < 0 it reflects

that mortality rates improve each year, while ϑ2 > 0 shows how mortality improves at a

slower pace for higher ages. Nonetheless, at very high ages (larger than 113) mortality

raises over time. This last observation is counter-intuitive to the model (as mortality

is not expected to deteriorate), but it is not regarded as a serious issue by the authors.

The fact that 113 presents a very unlikely survival age after all and the small sample

size at these ages, might induce an estimation error.

Another canon for classifying an estimation as biologically reasonable is that, for a

given future year, mortality for older cohorts is higher than that of younger cohorts. In

Mathematical terms, for a fixed time (t̄):

∂q̃(t̄, x)

∂x
> 0 (2.9)

This implies that ϑ2 > 0 or that it is negative with very little significance.

To examine the cohort dynamics, a survivor index, S(t) is introduced. Said index is built

based on mortality rates for a specific cohort. Investigating it allows studying biological

reasonableness. By studying a cohort it is possible to analyze the force of mortality

and how it changes over time. To determine the evolution of the survivor index they

use Monte Carlo simulation to characterize the evolution process of A(t) using equation

2.8, and then use those results to simulate the realized mortality rates (q̃(t, x)) and the

survivor index.

At a first stage, when ignoring parameter uncertainty, by taking estimates of ϑ and

V = CC
′

as the true parameter values they find that: (i) Ex-ante probabilities of

survival for 0 to 65 or expected values of the survival curve, also called spot survival

probabilities, appear higher when only incorporating data for later periods. This signals

for better improvements in the future for A(t). (ii) The percentiles of the survival curve

are narrower in the beginning and wider in the end. (iii) The confidence interval for

S(t) is narrower when only using the later data. (iv) The variance of the projections

is low in earlier years, meaning there is more confidence in the projections for the near

future. (v) After the 10th year, the variance grows exponentially, this occurs as there is

a compound effect of the yearly mortality shocks over time since each shock affects the

1For example, mortality for a given year increases the older the individual, the probability of never
dying is zero, among others.
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survival rates of the following years. Later, when acknowledging parameter uncertainty

via Bayesian methods, by using a non-informative prior distribution for what before was

Z(t) ∼ N(ϑ, V ), the authors conclude that the further in time, the larger the uncertainty

for the S(t) projection due to uncertainty regarding its underlying parameters.

All things considered, the application of the CBD model results in both an adequate

in-sample fit and a good forecast. The inclusion of the two factors seems solid when

looking at past data allowing to improve the fit. The model also allows the simulation of

the distribution of the survivor index over various time horizons and understanding the

implications of accounting for parameter uncertainty. Additionally, the results of the

estimation, seem to generate a biologically reasonable model. Regarding the downsides,

as any parametric estimation, there is the risk of model error, meaning that the model’s

form is not entirely accurate, biasing the estimation and the forecasts. Likewise, there

is the problem of the forecasts being less reliable as t increases. Nonetheless, this is a

problem present in most, if not all parametric approaches.

2.1.3 The P-spline smoothing

Currie et al., in their paper ”Smoothing and forecasting mortality rates”, explore a

procedure to smooth and forecast mortality tables via the penalized Splines (P-splines)

method. To do so, they use a penalized generalized linear model with Poisson errors.

To test the model on real data, the authors use a mortality database for the UK.

2.1.3.1 Generalized linear models

Generalized Linear Models (GLMs) extend the linear model to accommodate dependent

variables that do not follow a normal distribution. It is quite common to find in situations

in which the dependent variable does not meet the standard hypothesis of the linear

model (normal data, constant variance, etc.). There are two main elements present when

thinking about generalized linear models: the distribution of the dependent variable, and

how the model establishes a relationship between the mean of the said response variable
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and the other variables that are thought to be explanatory. In a standard GLM model:

y = Xβ + ε

ε ∼ N(0, σ2I)

E(y) = µ = Xβ

(2.10)

Where Xβis the linear predictor, i.e. a linear combination of the predictor variables

represented as η that is related to the mean (in the case of an ordinary regression η = µ

so the link function is the identity). Here, y is a random vector that comes from a

distribution of the exponential family and whose mean is µ, also known as the random

component. The linear predictor η = Xβ corresponds is also known as the systematic

component. Finally, the link function is a monotonous and derivable function that

establishes the relationship between the mean and the linear predictor:

η = g(µ)

E(y) = µ = g−1(η)
(2.11)

From this model it is possible to distinguish two parts: the probability function of the

response variable and the linear structure of the model.

Despite GLM models being somewhat flexible, since they can be adjusted for a large

variety of distributions, they assume that there is a linear influence of the explanatory

variables on the dependent vector, meaning that:

η = β0 + β1x (2.12)

Nonetheless, there are many cases where the effect of x is not linear and can have an

unknown form given by f(x) that can take different functional forms to improve the fit:

η = β0 + f(x) (2.13)

2.1.3.2 Smoothing methods: Splines

Another option to increase the goodness-to-fit is to use a smoother. This tool represents

the trend of the dependent variable and as a function of one or more predictors that are
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linear in x. This method implies that this new estimation has less variability than the

original y, smoothing the result.

All non-parametric regressions have as an advantage that they are based on the data

itself to specify the shape of the model. This means that the curve at a given point

depends solely on the observations at that point as well as the neighboring ones. Among

the non-parametric regression techniques, the Splines and Splines with penalties (P-

splines) can be found.

Splines are polynomial piecewise-defined functions. Certain constraints are imposed on

each joint, also called nodes, which divide the dominion of the function into regions.

The splines are defined by three main elements: its polynomial degree, the number of

nodes and the location of the nodes.

Although there are many possible combinations, a popular choice consists of polynomials

of third-degree that smoothly join at the nodes (meaning that their first and second

derivatives are continuous at these points). A spline of polynomial degree m with k

nodes (C1, C2, ..., Cn) is defined as follows:

y =
m∑
i=0

βix
i +

m+k∑
i=m+1

βi(x− c(i−m))
m
+ (2.14)

Where:

(u)+ =

u if : u > 0

0 otherwise
(2.15)

Natural cubic splines are another version of the spline that is linear beyond the limit

nodes. For this version of the model fewer parameters need to be estimated, as now

the condition for the derivative of the estimation to be continuous at all the nodes is

eliminated. The model is now expressed according to equation 2.16:

y = β0 + β1x+
m+1∑
i=2

βi(x− c(i−1))m+ (2.16)

Usually, 3 ≤ n ≤ 7. Moreover, if the sample size is large (n ≥ 100) and the dependent

variable is continuous, k = 5 is a good balance between flexibility and precision trade-off.

If the sample is small (n ≤ 30), k = 3 is a good starting point. The Akaike Information
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Criteria (AIC) can be used to choose k. Finally, a reasonable default placing for the

nodes is along the quantiles of the dominion (x).

Another approach for fitting the sample is to use smoothing splines, this procedure

consists of minimizing the residual sum of squares (RSS) for the fitted model:

RSS(f, λ) =

n∑
i=1

(yi − f(xi))
2 + λ

∫ xn

x1

f
′′
(x)2dx (2.17)

The first term of the equation measures the differences between the fitted and real value,

while the second term penalizes the curvature of f(x). By penalizing the curvature (i.e.

the second derivative) it is ensired that the fit does not have too many abrupt changes

in its slope so that the curve has a parsimonious movement. Here, λ is the smoothing

parameter and controls the balance between the estimation bias and variance of the

fitted curve. If λ = 0, the curve interpolates the data, and if λ → ∞, the second

derivative becomes 0, resulting in a linear fit.

Smoothing splines are natural cubic splines where there are as many nodes as unique

observations of the dominion, x. The penalty term on equation 2.17 ensures that the

coefficients are reduced towards linearity, limiting the number of degrees of freedom

used, helping to avoid the overparameterization of the model.

The smoothing splines are linear, meaning that for each unique value of xi there is a

base of functions h(xi) where:

fλ(x) =
n∑
i=1

h(xi)yi (2.18)

Taking equations 2.18, the expression 2.17 can be rewritten an solved to find the optimal

version of f(x) or θ in this case:

RSS(θ, λ) = (y − hθ)′(y − hθ) + λθ
′
Ωθ

θ̂ = (h
′
h+ λΩ)−1h

′
y

(2.19)
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Here, the larger the value of λ, the smaller the estimation coefficients. After the smooth-

ing process is completed, the adjusted model is given by the following expression:

f̂(x) =
h∑
j=1

hj(x)θ̂j (2.20)

The problem related to this optimization process is how to determine the correct value

for λ, the smoothing parameter, for a particular data-set. This can be done either

through cross validation2 or through generalized cross validation3.

2.1.3.3 Smoothing methods: P-splines

As mentioned previously, there are two main approaches when smoothing with splines.

Firstly, smoothing splines use as many parameters as observations, which makes their

implementation not efficient when the number of data is very high. Secondly, regression

splines can be adjusted by least-squares once the number of nodes has been selected.

Nonetheless, deciding the number of nodes can be a complicated process. Penalty splines

solve the difficulties of both approaches: they use fewer parameters than smoothing

splines, and selecting correctly the number of nodes is not as crucial as in the regression

splines.

The P-Splines model has several advantages: The splines have a low range, meaning that

the size of the base is smaller than the dimension of the data; contrary to smoothing

splines, where there are as many nodes as data. This allows to work with matrices of

smaller dimensions and makes the process more efficient in terms of computation, as for

P-Spline the number of nodes can’t be larger than 40. Furthermore, the inclusion of

penalties, makes the number and location of the nodes less decisive.

For n data points (xi, yi) the model to be fitted is defined by:

yi = f(xi) + εi

εi ∼ N(0, σ2)
(2.21)

2Where each time a data-point (xi, yi) is left out and the value of that point is estimated using
the remaining observations. Then a sum of squares is built: CV (λ) = n−1 ∑n

i=1(yi − f̂−iλ (xi))
2where

f̂−iλ (xi) refers to the fit in xi when leaving out observation i. Finally the optimal value of the smoothing

parameter is found by optimizing d(CV )
dλ

3For an extension on this method see Durban [2003]
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Where, f(xi) is a smooth function that relates each coordinate pair. The objective of

the P-splines method is to find f(xi). The procedure consists on using a base, B = B(x),

for the regression and then modify the likelihood function introducing a penalty system

based on differences between adjacent coefficients. For normally distributed data, the

regression model in matrix notation is defined as:

y = Ba+ ε

ε ∼ N(0, σ2I)
(2.22)

To find for the regression coefficients, the penalized minimum square function is solved:

S(a, y, λ) = (y −Ba)
′
(y −Ba) + λa

′
Pa (2.23)

Where P is the matrix that penalizes the coefficients and λ is the smoothing parameter.

If λ = 0 the problem is equivalent to regressing y as the dependent variable and B

as the matrix of independent factors. It is important to point out that the system of

equations that gives solutions to this problem depends on the size of the base and not

on the number of observations. The base, B, for the regression can be calculated using

B-splines.

A B-spline of grade p consists of (p + 1) segments of a p degree polynomial, that meet

at p nodes. Moreover, at each node, the derivatives up to the (p − 1)th degree are

continuous. Besides, the B-spline is positive in the domain extended by (p + 2) nodes

and equal to 0 for the remaining part. Except for the ends, where the domain overlaps

with 2p segments of its neighboring polynomials. Finally, for each value of x, there are

p+ 1 B-splines that are non-null. Examples of first and second degree B-splines can be

seen in figures 2.1 and 2.2 respectively.

Figure 2.1: Example of a first degree B-spline: It is made up of 2 pieces of linear
polynomials joined together at three nodes.
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Figure 2.2: Example of a third degree B-spline: It is made up of 4 pieces of cubic
polynomials joined together at four nodes.

It is important to note that the size of the base has an impact on the fitted curve, the

larger the base, the curve is less smooth. When the number of nodes is equal to the

number of data points, the curve ends up interpolating the data. To solve this issue, it

is possible to introduce a penalty in the second derivative of the curve, once the base

and the number of nodes have been selected. This new penalization system transforms

the problem in equation 2.23 in:

S(a, y, λ) = (y −Ba)
′
(y −Ba) + λ

∫
x
(B
′′
a)2dx (2.24)

This penalty transformation is common and it is what is used for smoothing splines,

nonetheless it is possible to penalize any derivatives of any order.

However, the main aspect of employing P-splines is that the penalty is discrete. Con-

sequently, the coefficients are penalized directly, instead of penalizing the curve and

reducing the problem’s dimensions. Another advantage of P-splines is that if the curve

is polynomial, a P-spline will retrieve it exactly. It is also relevant to mention that

the mean and variance of the adjusted values will be the same as the ones of the data

regardless of the smoothing parameter value.

Another way to introduce the penalties is to penalize d-order differences between the

adjacent coefficients of the bases of B-splines, this is a good approximation to the penalty

portrayed in equation 2.24. The differences penalty when added to the least-squares

function, leads to the penalized least squares equation: 2.23 in:

S(a, y, λ) = (y −Ba)
′
(y −Ba) + λa

′
Pda⇒ â =

B
′
y

B′B + λPd
(2.25)
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Where Pd = (∆d)
′
∆d. The penalization can have any degree, for instance if d = 2 there

is a quadratic penalty on the differences with the adjacent data points complied in a

difference upper triangular matrix, D:

(a1 − 2a2 + a3)
2 + ...+ (ak−2 − 2ak−1 + ak)

2 = a
′
D
′
Da (2.26)

This procedure helps avoiding undersmoothing by penalizing the erratic behavior of âk

and forcing the splines coefficients to follow a smooth pattern.

As discussed earlier, the role of λ is to control the smoothness of the curve, but when

a penalization on differences is included, this parameter penalizes the coefficients that

are widely separated from each other. Therefore, if λ→∞, the coefficients get closer to

zero and the fit becomes polynomial. On the contrary, if λ → 0 the process is now the

same as employing ordinary least squares. Just like other smoothing methods, there are

several criteria to select the value of lambda: AIC and BIC among others4.

All in all, the objective of the P-Splines is, once a base B and a penalty P , have been

chosen to find a set of parameters that optimize the penalized likelihood given in equation

2.25.

2.1.3.4 Currie et al. P-Spline extension

As discussed previously, the aim of the authors in this paper is to apply the techniques

discussed in subsections 2.1.3.1 to 2.1.3.3 to forecast future mortality by extrapolating

past trends. Their model has two main advantages, first of all, that it is non-parametric

so unlike its parametric counterparts (such as the Lee-Carter and CBD models) does not

assume anything about the functional form of the mortality rates. Another advantage is

that the model is built in such a way that the forecast occurs as a natural consequence

of the smoothing procedure.

The proposed methodology uses two-dimensional B-splines with penalties regression

(known as P-splines) and extends it to generate forecasts. Once the bi-variate P-splines

is completed, a family of fitted mortality surfaces is obtained. Afterward, the authors

take the future values as missing values, which through the penalization allows estimat-

ing future data-points at the same time that the mortality surface is being fitted. In

4For an extension on these methods see Durban [2003]
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the original P-Splines method, the choice of the penalty function is not as crucial to

the outcome. Nonetheless, this issue is now critical as the penalty function will now

determine the forecast’s form.

The fitting and forecasting are done using data sets of two insurance companies in the

UK. For each calendar year and age, the authors have the deaths (claims matrix denoted

as Y ) and exposure (years lived matrix noted as E). With this data, the matrix of raw

hazards R = Y
E is defined and this is the variable that is projected in time.

As mentioned in section 2.1.3.3 the method of P-splines consists of two steps, first to

use B-splines as the basis for the regression, and secondly to modify the log-likelihood

by a difference penalty on the regression coefficients. This base method is extended by

the authors to two dimensions by adapting regression and penalty matrices and making

them appropriate for two-dimensional modeling.

To briefly set the problem on section 2.1.3.3 in the notation of the mortality trends

context the following variables are defined: For each age i, there is a set of data-points

(yi, ei, xi) for i = (1, ..., n), where yi and ei corresponds to the total deaths and exposures

respectively in year xi. It is assumed that yi is described by a Poisson distribution where

E(yi) = µi = eiθi. The aim is to find a smooth estimate θ = (θi) for the observed forces

of mortality θ̂i = yi
ei

.

One way of fitting the force of mortality is to employ a polynomial GLM, taking into

account the offset of the exposure: log(µ) = log(e) + log(θ) = log(e) + Xa, such a

model uses 1, x, x2, ..., xn as the basis functions. A more flexible option is to use a set of

polynomial B-splines B1(x), ..., Bk(x), where each spline is a polynomial segment joined

at the knots. Now, a matrix B is defined; its rows correspond to the B-splines in the

basis for each sample year. The fitted values Bâ, correspond to the weighted averages

of the coefficient subsets. To avoid under smoothing it is possible to penalize the erratic

behavior of âk by introducing a quadratic penalty like the one described in equation 2.26.

When the penalty function is included in the log-likelihood equation, the optimization

problem is expressed as follows:

`p = `(a, y)− 1

2
a
′
Pa (2.27)
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Where `(a, y) is the usual log likelihood for a GLM, and P = λD
′
D is the penalty matrix

and λ is the smoothing parameter.

The two dimensional regression matrix proposed by Currie et al. is structured as follows:

A regression problem has x1 and x2 as regressors and an m× n matrix (Y ) containing

the data. The matrix Y is indexed by x1 on its rows (age in this case), and by x2 on its

columns (year for the mortality problem). Let Ba be an m× ca matrix of B-splines for

smoothing along x1 and By an n×cy matrix of B-splines for smoothing along x2. Hence,

the two-dimensional base matrix is defined as its tensor product, more specifically the

Kronecker product, of both matrices5:

B = By ⊗Ba (2.28)

At this point, the model to be fitted is given by y = f(x1, x2) + ε, where y is a vector

of length mn. Under this framework6 E(Y ) = BaABy, where A is a ca × cy matrix

that contains all the regression coefficients, a. The rows and columns of A are given

by A = (a1, ..., acy) and A′ = (a1, ..., acy) respectively. Once matrix A is defined, a

penalization system for its rows and columns is defined. In this case, a roughness

penalty across all the cy columns of A is applied, and Da refers to the difference matrix

acting on the columns. Analogously, rows are penalizing considering the linear predictor

corresponding to each row of Y , and Dy refers to the difference matrix acting on the rows

of A. Rows are penalized by means of the expression a
′
(Icy ⊗ D

′
aDa)a while columns

are penalized using a
′
(D
′
yDy ⊗ Ica)a. Consequently, the penalty matrix is given by the

expression:

P = λaIcy ⊗D
′
aDa + λyD

′
yDy ⊗ Ica (2.29)

Where λa and λy are the smoothing parameters for age and year, respectively. The

regression coefficients â are estimated by maximizing the penalized log likelihood given

in equation 2.27, employing B and P as defined in equations 2.28 and 2.29.

Once the two dimensional B-splines base and penalty matrix are defined, the forecasting

procedure can be explained. As mentioned earlier, the authors take the future values as

missing, which allows performing the in-sample fitting and the forecast jointly.

5For an illustrative example of the graphic representation of the bi-dimensional base see appendix A
6In regular notation E(y) = Ba
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For a given age, there is data for y1 and e1 available for n1 years. Moreover, B1 cor-

responds to the B-spline regression matrix in a P-spline mortality rates model. To

forecast n2 years, the set of nodes used during the computation of B1 is extended and

the regression matrix B is computed for n1 + n2 years, therefore:

B =

B1 0

B2 B3

 (2.30)

Moving further, the future values y2 and e2 are included into vectors that hold both

the historical and the missing data: y
′

= (y
′
1, y

′
2) and e

′
= (e

′
1, e

′
2). Now, the regression

coefficients are estimated optimizing the log-likelihood function given in equation 2.27

employing the observed data y1 only7 From this equation, it is important to note that

the penalty function is what allows the forecast to be done. Hence, it is the form of

the penalty function what determines the form of the forecast. Moreover, penalizing the

elements of a guarantees that the coefficients and the forecasted data-points are smooth.

After maximizing the log-likelihood function and employing the matrix defined in equa-

tion 2.30 the penalized likelihood equations are obtained. These equations can be solved

through the penalized version of the scoring algorithm:

(B
′
V W̃B + P )â = B

′
V W̃Bã+B

′
V (y − µ̃) (2.31)

Here, B and P are the regression and penalty matrices respectively, W̃ corresponds

to the diagonal matrix of weights. Matrix B is defined according to the expression in

equation 2.30. While all the elements with a tilde correspond to the current estimates

and â to the updated estimate of a. Moreover, V is a block diagonal matrix (I, 0)8.

Employing this version of the scoring algorithm, the fitting and forecasting are done

synchronously.

After fitting the data for n1 = 52 and forecasting for n2 = 50 the authors find that

setting a first-order penalty does not affect majorly the regression coefficients. The

authors also point out that penalties of higher-order affect the extrapolated regression

coefficients more notoriously, and that these projections correspond with the order of the

7Consequently, equation 2.27 changes to: `p = `(a, y1) − 1
2
a
′
Pa.

8Where I is an identity matrix of size n1 and 0 refers to a square null matrix of size n2.
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penalty. The projections are approximately constant for first order penalties, linear for

second-order, or quadratic for third order. This means that mortality rates continue at a

constant level, improve at a constant rate or improve at an accelerating (quadratic) rate,

respectively. These functional forms in the year direction occur since the age penalty

keeps the age structure across age groups. The choice of the penalty degree is done

by a trial and error process to find the trend that suits the past behavior of the series

best. In their case, Currie et al. choose a second-order penalty that results in a linear

extrapolation.

To see how the suggested model behaves compared to the Lee-Carter model, the authors

employ back-testing, fitting on an earlier segment of the data, and forecasting on a later

segment, to compare the forecasted values with the realized ones. They find that the

Lee-Carter method predicts larger falls in mortality than the P-splines method (making

the mortality rate curve less parsimonious with the parametric model). Nonetheless,

as both models forecast within the 95% confidence interval, they are consistent with

each other. Regarding the goodness-to-fit, the P-spline model seems to be better, as

it has lower deviance. This lower deviance of the P-splines occurs because the model

is local and two-dimensional, which allows the mortality surface to react to changes in

the observed mortality that occur locally. Finally, the P-Spline achieves lower deviance

than the Lee-Carter approach while utilizing fewer parameters.

All things considered, the benefits of the paper’s suggested methodology revolve around

its lower computational complexity, as it estimates fewer parameters. The improvement

in computational speed becomes more relevant, the larger the data-set used. Besides,

the model allows extrapolating missing values in any direction of the data-grid using

equation 2.31. Another benefit is that forecasting is a natural consequence of the in-

sample fitting and that the model is non-parametric. A downside of this approach is

that its correctness relies on the ability to choose correctly the penalty degree, and the

fact that there is not a standardized procedure to optimize this parameter’s value.

2.1.4 Overall comparison

The discussion in the previous sections has brought attention to the arguments for

and against the usage of each model for in-sample fitting and forecasting. There are

advantages and disadvantages of each method, nonetheless, there is not a model that
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appears superior. The differences between the forecasts obtained using each method

draw attention to the difficulty of forecasting so far ahead in time. All methods ensure

that the projected results are within the 95% confidence interval, and their width reflects

the level of uncertainty, that increases the further the forecast is from the last data point.

This is observed in all papers, as the confidence intervals get larger for years that are

farther away in the future.

As discussed earlier, the first step for incorporating population and sample information

is to perform an in-sample fit and to forecast the mortality rate, based on the popu-

lation information and using stochastic modeling. To reduce model risk, and since no

methodology proves to have a superior fit across all the age and time spectrum, the

suggestion is to use all three models and compare their performance when averaging

the results and also by themselves. It is important to remember that the three models

discussed are among the most popular ones and have proven to behave well for different

data-sets, countries and year intervals (CF: Lee [2000], Yang et al. [2010], and Goicoa

et al. [2019]).

2.2 Methods for incorporating together sample and popu-

lation information

As mentioned in the previous chapter, the insured population does not behave in the

same way as the general population, meaning that the former can not be exclusively

modeled by fitting and forecasting the latter. The problem with the data at hand for

the insured population is that usually, the time series data available are short, therefore,

applying the models discussed earlier for the insured population is not feasible. Short

series produce poor forecasts due to a higher estimation error. In general, for short

series, every single observation could influence the forecast, therefore the method selected

should provide a cautious estimate of errors and possible variability connected to the

forecast. In case the sample contains outliers, these are not easily identifiable in periods

shorter than 20 years and can’t be dismissed easily as doing so will reduce the sample size,

even more, aggravating the sample size problems. Due to the limitations of modeling

methods for insured data, actuaries within insurance companies have developed more

pragmatic approaches to model mortality for the groups at hand.
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In most countries, governmental agencies collect information regarding similar products

across different insurance companies and publish mortality tables for the industry. Since

there is a low number of exposure for younger ages and also for advanced ones, the table

is calculated separately for three age tiers: young ages (around 20-33), central ages

(around 24-67), and old ages (around 68 and over). Each tier is treated differently, the

methodologies and age ranges also varying per country. For the central ages depending

on the quantity of information available Generalized additive models (GAM) can be used,

this approach consists on an extension of the GLMs where the independent variable is

not necessarily a linear function of the dependent variables, but instead, it consists

on local regressions weighted by age, which allows using the exact distribution of the

dependent variable and avoiding imposing assumptions of normality (which is a usual

practice in other parametric methods).

For the central ages, the splines method can also be utilized, and different underlying

distributions for the death probabilities can be assumed. For old and young ages it is

a usual practice to employ the Coale–Kisker methodology. This is done due to the fact

that at said ages the number of exposures is low, causing the volatility of the observed

mortality to be high, which makes the usual graduation methods inappropriate. This

model assumes that an exponential increase of the central mortality rate at advanced

and young ages is not constant and that it increases following a linear pattern.

When the markets for a given country exhibit high volatility for the mortality rates it is

common to apply a security loading factor so that the insured mortality table can account

for possible deviations from the past experience. There are plenty of functional forms

that could be used to define the loading factor, but they usually take into account the

variance estimated at each age in the fit and adjust accordingly. It is natural that ages

with higher volatility would perceive a higher loading factor than the ones presenting a

lower variance. Usually, these types of loading factors aim to place the realized deaths

underneath the estimated ones with an almost certain probability (90% or higher).

Additional security loading factors can be set in place to cover for variations that can

not be predicted solely from the sample’s behavior. Other reasons for loading factors,

as suggested by Torres and Mayorga [2017], are:

1. Confidence intervals: The mortality table is constructed using information that

in some cases can be limited, meaning that it does not include the total behavior
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of the sector or population to be modeled. Hence, a safety margin that allows

covering the mortality levels of the population of interest should be added. It

covers for the limited experience within the industry.

2. Variation between companies: The insured mortality table should cover the

claims that occur for all companies in the sector. The fact that different companies

have different market shares and the number of exposures should be accounted for.

3. Random fluctuations: The calculated table is expected to cover most of the

random mortality deviations that can be experimented by the different insurance

companies. This security loading factor covers information deficiencies of the com-

panies that have a small pool of insured individuals.

4. Unknown variations: The mortality table should cover not only the expected

events but also the unexpected ones. Tables from a set of data can only represent in

an adequate manner the current circumstances or the ones in the very near future

(one or two years). Nonetheless, due to practical reasons these tables are not

calculated yearly, therefore, this loading factor has a greater relevance depending

on the number of years the table would be used for in the future.

Due to solvency requirements and the fact that the main use of the tables is the calcu-

lation of life insurance product prices and liabilities, it is important to note that most

of the time the statistical agencies and regulating entities will have a tendency to over-

estimate mortality. This is done to avoid liquidity problems in the future, meaning

that the estimated probabilities are not an exact representation of the expected death

rates realizations, but instead a modified one that mainly serves regulatory purposes.

Overestimating death probabilities diminishes insolvency risks, becoming an interest for

the regulating entity, nonetheless, it also implies a higher solvency capital requirement

which may represent an additional financial burden for the insurer, situation that is not

in line with the company’s interests.

Only companies that are large enough are approved by the regulator to build their own

mortality tables. Nonetheless, due to the lack of large amounts of data per product,

the regulator tends to pool together entire portfolios that belong to different companies,

regardless of age, coverage, and characteristics of the products at hand. This pool of

risks affects the ability of the companies to use life tables that reflect their own risk
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structures and do not adapt to their own experience. As pointed out by Lledó et al.

[2018], Solvency II allows for insurance companies to use as a Best Estimate life table

a percentage factor, however, this sometimes proves to be insufficient and inaccurate,

given that, although the life insurance products marketed by the different companies are

similar, the mortality and composition of each insurance portfolio differ among them.

Another approach to address the insurance mortality difficulties is to model claim sizes

instead of death frequencies. This approach reveals a difficulty known as the problem

of duplicates, which originates because claims do not correspond precisely to deaths as

an individual might hold more than one policy and therefore be the source of multiple

claims. This problem ends up causing statistical overdispersion which is by all accounts

undesirable. Moreover, to this situation it is added that mortality by lives is heavier

than by amounts, this finding is in line with industry experience, but it is not accounted

for in most claim-size modeling methods.

As it is shown here, due to the difficulties of modeling the death rates of the insured

population, the industry and the legislators have recurred to more pragmatic approaches

that do not necessarily represent the reality of each company in an accurate way. The

actual procedures promote the regulator’s interests at the expense of those of the com-

panies. The research on this matter is pretty limited, despite it being a subject of

paramount importance to the insurance industry, In the coming sections a model that

tries to overcome these difficulties will be presented.
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Data Description and Preliminary

Hypotheses

3.1 Data-sets and sources

This section will focus on the data collection methods and the traceability of the final

databases. Here, both the population and the insurer data-sets will be explained. It is

important to note that the population data has been obtained from public data sources,

which makes it easier to audit its quality. On the other hand, the insurer data was

obtained from a private source under a confidentiality agreement, which makes it more

difficult to inquire about data verifiability. Nonetheless, a great effort will be made to

explore and evaluate both data sets in the most meticulous way possible.

In the following sections for each data set, its sources, reliability, and collection methods,

will be appraised. An exploratory data analysis will be conducted as an initial screening

of the information and describing it through summary statistics. This first step is useful,

as it will help identify patterns in the data that can give light to the formulation of initial

hypotheses and expected a priori results. All the data will correspond to the population,

either total or insured, from the Netherlands.

32
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3.1.1 Population data

3.1.1.1 Data sources, traceability, and variables

The historical data from the total population has been obtained from the Human Mor-

tality Database (2020). This website is a project created in conjunction with the Uni-

versity of California, Berkeley (USA), and the Max Planck Institute for Demographic

Research (Germany). It contains detailed mortality and population data from 41 differ-

ent countries. For a nation to be included, its death registration and census data must

be considered as complete, so that the uniform method can be employed to reconstruct

the original data. Consequently, the countries and areas included are relatively wealthy

and for the most part highly industrialized. These databases on the website are updated

continuously as new data become available for each country.

Particularly, the data available for the Netherlands originally contains period data from

1850 to 2016. For this study the death counts (Dx,t), the population size on January

1st (lx,t) and the population exposed to risk of death on each period (Ex,t), all given per

year and age, are taken into account. To perform the fit for the historical time series

data, only the information between 1957 and 2016 is considered. The first part of the

sample is left out, as a 60 year series is considered long enough to produce a reliable time

series forecast 1. Moreover, the data collection methods are most likely more precarious

the farther away in time, resulting in more variability and dispersion which is avoided

by excluding the earliest observations.

Deaths, population estimates, and risk exposures are provided by single years of age

up to 109, with an open age interval for 110+. However, these data are sometimes

the product of aggregate raw data (e.g., 5-year age groups, open age intervals), which

have been split into single years of age through interpolation methods2. An advantage

of using this data source is that all the actions performed on the data as well as the

methodologies employed are very well documented so that the users can rest assured

that there is not faulty manipulation in any part of the data preparation process.

1Although mortality patterns might change over 50 to 60 years, due to improvements in medicine,
science, access to public health care, etc., it is necessary to use an input period that is long enough so
that the time series analysis can lead to reliable outcomes. Authors such as McNown and Rogers [1999]
and Denton et al. [2005] advocated for this approach.

2For more information on said methods, consult the Methods Protocol at https://www.mortality.

org/Public/Docs/MethodsProtocol.pdf

https://www.mortality.org/Public/Docs/MethodsProtocol.pdf
https://www.mortality.org/Public/Docs/MethodsProtocol.pdf
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For the Netherlands, the original and official data on deaths, and population for earlier

years have been taken from the country’s statistical agency (Centraal Bureau voor de

Statistiek). Moreover, data for the most recent years has been obtained from the online

database of Statistics Netherlands (CBS StatLine). These numbers collect statistics for

the entire territory of the country without differentiating between rural or urban areas.

The calculations done in this paper are based on the data for the total population.

Before calculating the total estimates, raw data for women and men are pooled. In

other words, death rates and other quantities do not correspond to the average of the

separate values for females and males. Meaning that the total values are affected by the

relative size of the two sexes at a given age and time. Moreover, it is relevant to point

out that the data in its raw form is given in a period format (by the year of occurrence

rather than by year of birth).

Just as some of the authors discussed during the literature review point out, at older

ages, the number of deaths and the exposure-to-risk end up becoming quite small. This

phenomenon causes a considerable random variation in the observed death rates. Be-

cause of this, estimations and forecasts at older ages need to be treated carefully, and

the faults on this portion of the data need to be acknowledged.

One of the variables employed is exposure-to-risk (Ex,t), which refers to estimates of

the population exposed to the risk of death during a given age-time interval. These

estimates are based on annual population estimates calculated at the beginning of the

year. Some small corrections are made to reflect the timing of deaths during the interval.

In general, the exposure estimations are calculated based on assumptions of uniformity

in the distribution of events. The uniformity assumption is usually not that detrimental

to the exactitude of the data, nonetheless, in some cases, it can mask the occurrence of

historical events that otherwise would have been reflected on the time series (See: Lledó

et al. [2020]).

3.1.1.2 Exploratory data analysis

Although the fit is done using data between 1957 and 2016, a larger data set from years

1910 to 2016 is used in this section to portray a more comprehensive picture of the

evaluation of mortality across the years. The data-set contains the observed values for
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death counts, population size at the beginning of the year, and the exposed population.

For some years the population size for ages larger than 100 was zero, therefore the data

points for ages 101 until 110+ were not taken into account as this led in some cases to

divisions by a null coefficient, which resulted in indeterminate results. Ultimately, 107

years and 101 ages (0 to 100) are available for the analysis, leading to a total of 10, 807

observations per variable and 32, 421 data points.

As a first approach, a graphic analysis will be conducted to determine patterns in the

data. Figure 3.1 represents the number of deaths with respect to the age of the in-

dividuals. Each line describes mortality in a given year, while lines of the same color

correspond to the same decade.

Figure 3.1: Total number of deaths per age and year.

Just as it happens with most populations, during the first year of life the death probabil-

ities reach their maximum. This occurs because the first months of children are critical

since their poorly developed immune systems must suffice them to survive against the

adverse conditions of the external world (environmental, nutritional, medical, etc.). The

modal age has gone from 75 to approximately 85 years. In the years after these ages,

there is a decrease in the number of deaths. However, it should be kept in mind that

this does not mean a decrease in death probabilities, but a decrease in the number of

deaths of individuals with 90 years as a proportion of the exposed population. The ratio

decreases since there is a diminution on the number of people left alive at said ages.
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Furthermore, it is also noticeable that the distance between the mean and the modal

ages has diminished.

Two phenomena regarding the dynamics of longevity are observed (common to most

developed populations):

1. The continuous displacement of the number of deaths towards older

ages: The modal age shifts to the right, also showing slight increases over time for

the number of deaths at that age. This phenomenon may occur as a consequence

of a shift in the average age at which chronic diseases begin.

2. The compression of mortality: Meaning the gains in life expectancy are not

perpetual, but finite instead.

On the other hand, there are important differences in the number of deaths depending

on the decade analyzed. For the ages between 20 and 30 years approximately, a higher

level of mortality in comparison to other age ranges, especially for the years between

1940 and 1949.

Another possible way way to represent the data are the raw death probabilities per year

and age as follows:

Figure 3.2: Death probabilities per age and year (log scale).

It is noticeable that mortality rates despite increasing with age, have been decreasing

over the years. There is also a greater variability for the death counts of the oldest
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and youngest individuals (ages 0-40 and 95-110 respectively). Figure 3.2, represents the

data on a new scale, nonetheless, it ratifies the conclusions expressed in the previous

paragraphs. In general, after surpassing the first months of life, where death probabilities

are high as those of an 80-year-old person, the probability increases progressively along

with the individuals’ age. However, there is a steeper climb between ages 15 and 20. The

highest mortality rate for all ages corresponds to the years of 1944 and 1945, the years of

the Dutch Famine, an event that took place in the German-occupied Netherlands, near

the end of World War II. A German blockade cut off food and fuel shipments from farm

towns, affecting around 4.5 million people and taking the lives of 22,000 individuals of

all ages.

The average death probabilities across all years in the sample at age 0, 50, and 100

are 0.03195, 0.00547, and 0.61951 respectively. As expected, the maximum standard

deviation is observed at the age of 100 (0.28759 percentage points), while the minimum

occurs at age 12 (0.00065 percentage points). During the first year of life, the standard

deviation is 0.03490 and it decreases quite substantially for age 1 at 0.00896 percentage

points. As a conclusion from this analysis, it is possible to affirm that considering its

sources, the transparency in the data treatment methods, and the ability of the data to

represent historical events and known demographic patterns, the population data can

be taken to be reliable.

3.1.2 Sample data

3.1.2.1 Data sources, traceability, and variables

The sample data has been obtained directly from a Dutch insurance company. It cor-

responds to a product that is mainly commercialized via bancassurance distribution

channels, meaning that as a consequence of an arrangement between a given bank and

an insurance company, the latter can sell its products to the bank’s client base. The

products hereby analyzed are life-risk insurance contracts under the format of Annual

Renewable Term (or ART) insurance, a term life insurance that offers a guarantee of

future insurability for a given period of years. For the population object of the insurance

contract and sum insured discussed here, there are no medical examinations required,

meaning that as long as they meet the mortgage requirements from the bank, the access
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to the insurance product is a priori guaranteed. Moreover, during the stated period, the

policyholder will be able to renew the coverage each year without reapplying or passing

any filter, such as medical exams, to reaffirm eligibility. The insurance products in this

portfolio are mainly linked to mortgages. In the case of mortgage indexation, the insur-

ance covers the risk of death, so that if the insured individual dies, the company will

cover the rest of the payments left instead of passing the debt to the deceased’s heirs.

The products in the portfolio have been commercialized for 15 years. The available data-

set contains information for ages 23 until 94 and for the period between 2007-2016. At

earlier ages, the portfolio is substantially small and unstable, as it is not usual for young

individuals to get mortgages or annuities. For the interest the analysis the insurer’s

information will be considered only form age 40 onward, this subset is also taken to

match the sample information with the population information analyzed at the country

level, which has been described in the previous subsections. To protect the identity of

the insured individuals, the data provided has been anonymized and summarized into

two matrices, one for exposures (Ex,t) and another one for deaths (Dx,t), for both of

them each row corresponds to the age, while each column refers to a given year.

As a final note, it is worthy to mention that the information is captured by both the

affiliated bank as well as the insurance company from start to finish, which makes the

data traceable and trustable, as it is reported by the source and heavily monitored by

both parties in the interest of the good development of the business. One last remark

is that 2016 is not the last year of data available to the company, this is important

because it allows the information that has been reported to be fully updated, so that

the Incurred But Not Reported claims (or IBNR) are fully developed and the information

truly reflects the occurrences in a given year.

3.1.2.2 Exploratory data analysis

As mentioned earlier, the data base contains a total of 10 years of observations across

ages 40 to 94. The portfolio size and composition is explored in the subsequent plots:
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Figure 3.3: Portfolio size per year.

Figure 3.4: Portfolio composition by age.

As seen in graph 3.3, the portfolio is rather stable among the first 6 years, with an

average of around 246.780 clients per year. The size of the portfolio starts increasing

as of the year 2013 and it continues to do so for the next 4 years. On average there is

an increase in the portfolio size of 70.580 customers in the last 4 years. The maximum

increase is when passing form 2014 to 2015 with a total of 76.200 new insured individuals.

Moreover, in graph 3.4 the age composition of the portfolio can be observed. Form this

representation, it is seen that the majority of the portfolio is made up of individuals

between the ages of 40 to 60. After said age, the amount of individuals per age starts

to drop further at each age, until the portfolio ceases entirely at age 95.
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Figure 3.5: Deaths per year.

It is visible in figure 3.5, the number of deaths has a direct relationship with the portfolio

size. In the first 6 years, deaths are lower, compared to those in the last 4 years. This

occurs as there are more exposures in the later years. Nonetheless, from 2007 until 2012

deaths decrease relative to the rather constant portfolio size. This occurrence could

potentially indicate a good risk-selection strategy that improves as the company gets

more experience with the product in the market.

Figure 3.6: Deaths per age.

Figure 3.6 depicts how deaths per age behave following a Gaussian bell. The largest

density of deaths occurs from ages 46 to 64. The low amount of claims from ages 70 and

onward, occur due to the low level of exposures at these ages, which was earlier shown

figure 3.4.
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Figure 3.7: Population vs. sample observed death probabilities for ages 64-66

Lastly, figure 3.7 places on the same Cartesian space the population and the sample

information, it portrays the observed death probabilities for ages 64 to 65. The pop-

ulation death probabilities per age at every year are shown in black, while the sample

probabilities are shown in red. It is evident that the insured individuals are less likely

to die at every point in time when compared to the gross population. This occurs as the

insured people belong to a particular segment of society that has been chosen out of the

total population, in this case via the selection process of the bank. The selection process

evaluates if a mortgage should be conceded to a client, it takes into account the earnings

of the individual, his credit score, education, among other variables that are positively

correlated with a longer life expectancy. Moreover, the sample data has less variance in

comparison to the population, this occurs as selected clients are more homogeneous in

comparison to the total pool of the country’s inhabitants. Finally, this group of figures
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serves to illustrate the fact that the behavior of the sample and the overall population

are different, and that the former can not be explained only by modeling the latter.

3.2 Preliminary hypotheses and expected a priori results

Figure 3.7 already gives a very good impression of what the final results are expected to

look like. After integrating the population and the sample data together, the forecast

should follow the same trend of the insured data (shown by the red data-points). The

final forecast should be able to take the trend stemming from the population data (black

points) and correct it so that it resembles that of the insured population. Between

the in-sample population models, a priori none of them is expected to be superior.

In general most of their results should be similar and their in-sample fit and forecast

goodness-to fit measures shouldn’t differ much unless unexpected anomalies in the data

are experienced.
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Methodology

Mortality tables are usually constructed taking as a base the survivors for each age. The

usual practice when calculating a mortality table is to start from an initial population

value, l0,t for the biometric variable lx,t which represents the number of individuals

alive each year that have reached age x. Assuming death as the sole exiting factor (no

migratory movements are possible), lx,t decreases for every age effect of mortality in the

group. Said effect is represented by the probability that a person of age x will die before

reaching age x + 1 and is noted as qx. It is also common to use the variable m(x, t),

also known as the raw mortality rate which is defined as the ratio between the number

of people who die during the year t at age x and the population exposed to death risk

that in year t have reached age x, as follows 1:

m(x, t) =
Dx,t

Ex,t
(4.1)

Moreover, the death probability (q(x, t)) refers to the likelihood that an individual aged

x during year t dies in the period within t and t + 1. In general q(x, t) and m(x, t) are

linked by means of the following expression:

q(x, t) ≈ 1− e−m(x,t) (4.2)

1Please note that the notation here does not correspond to actuarial commutation symbols but
demographic notation instead.
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Finally, the mortality force, denoted as µ(t, x), refers to the instantaneous rate of mor-

tality at age x at instant t in time.

4.1 In-sample fitting and forecasting

The first step of the process is to smooth and project the death probabilities, q(x, t),

using stochastic modeling. To reduce model risk, as none of the models fits optimally for

all ages and years, three of the most popular models in this area have been selected and

their results will be optimally combined. All three models have been used to smooth

q (x,t) for ages 40 to 89. For ages 90 to 95, only the Lee-Carter has been used, since

the CBD does not adjust well for advanced ages and the P-splines needs a broader age

range so that it can be employed.

When analyzing the different approaches on stochastic mortality models, it is usual to

see that some models fit and forecast the force of mortality, µ(t, x), while some others

attempt to explain death probabilities, q(x, t). This discrepancy on dependent variables

is not a problem, as equation 4.2 provides an expression for finding the equivalence

between both variables.

Depending on what distribution used, the number of deaths, Dx,t is given by either a

Poisson or a Binomial distribution according to the following statistical hypotheses:

Dx,t ∼ Poisson(λ = ecx,tµ(x, t)) (4.3)

Dx,t ∼ Binomial(n = lx,t, p = q(x, t)) (4.4)

Where λ = ecx,t corresponds to the average population in year t and lx,t to the population

at the beginning of the year.

4.1.1 The Lee-Carter procedure

Just as described in equation 2.1 the original Lee-Carter model was based on a Poisson

distribution. In her paper, Smoothing constrained generalized linear models with an

application to the Lee-Carter model, Currie [2013] points out that a better fit is obtained
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if the Binomial distribution is used. Nonetheless, in order to make all models comparable

a Poisson distribution will be employed as follows:

log(m(x, t)) = αx + βxkt + ε (4.5)

Where ε is the error term. The estimation of the parameters in equation 4.5 is done

employing the maximum likelihood procedure. Moreover, the projections are executed

assuming an ARIMA process for kt, while assuming that its future behaviors are de-

scribed by means of a random walk with drift as follows:

kt+1 = kt + drift+ εt+1

εt+1 ∼ N(0, σ2)
(4.6)

4.1.2 The CBD procedure

The functional form of the two factor model proposed by Cairns et al. can be rewritten

as follows when using a Poisson distribution:

log(m(x, t)) = k1t + k2t (x− x̄) + ε (4.7)

Where ε is the error term, x refers to the age of the individuals. Moreover, k1t is the

factor affects mortality rates equally across all ages, while k2t is a factor that affects

mortality at higher ages more. As mentioned in the literature review segment, larger

effects for older individuals are reasonable. It can be seen in the data that longevity

improvements are higher at older ages in comparison to younger ones. This approach

employs a Poisson distribution and the projections for the time-dependent parameters

k1t and k2t are done assuming these variables behave according to a random bi-variant

walk with drift.

4.1.3 The P-spline procedure

The model proposed by Currie et al., encourage the use of splines with penalties to

estimate the mortality force. This technique works as a smoothing method in the context

of generalized linear models. The main characteristics of this approach are the use of a
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base of B-splines for the regression and modifying the likelihood function by penalizing

the regression coefficients. The proposed model can be written as:

log(µ(x, t)) =
∑
i

∑
j

θijBij(x, t) (4.8)

Where Bij(x, t) is the regression’s base, which takes into account both the effect of

the age and the year. This double account of effects is achieved by building the base

using the Kronecker product. Moreover, θij refers to the coefficients that need to be

estimated employing the penalized likelihood maximization. The penalty imposed on

the coefficients controls the smoothness of the fitted data. It depends on two parameters,

one that controls the smoothness across the ages, and another one that controls it across

the years. The optimum value of these parameters is selected using the BIC criteria.

Predictions are obtained by extending the bases of B-splines (taking the forecasted years

as missing values) and readjusting the model.

4.1.4 Overall final result integration

One aspect to take into account when evaluating the quality of the forecast is to estimate

the uncertainty of the model’s parameters. In the case of the Lee-Carter and CBD

model, there is not an explicit and closed expression to estimate the model’s parameters.

Therefore, the uncertainty linked to these parameters can be quantified using bootstrap

techniques.

Particularly for this paper, the semi-parametric bootstrap proposed by Brouhns et al.

[2005] has been used. This method consists on generating an amount B of samples for

the number of deaths Db
x,t where b = 1, ..., B. The sample is generated utilizing a Poisson

distribution with mean λ = Dx,t i.e. the number of deaths registered effectively per age

x and year t. Each bootstrapped sample is used to estimate the model again, which

results in B estimated parameters. With these estimates, B projected trajectories are

generated, while acknowledging for the prediction and the model error. Here, B = 1000.

Finally, for the uncertainty linked to the P-splines, it is possible to find explicit expres-

sions for estimating the parameters, therefore their uncertainty related to both adjust-

ment and projection can be calculated by projecting and stressing the death probabilities

q(x, t) at 99.5% confidence level.
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To evaluate the goodness to fit of the models before combining them and to verify

that the average death probabilities estimated by each of the three models are a good

approximation to the raw death probabilities observed in the population, the R2 can be

employed as a unit of measure. Here the R2 is calculated by comparing the logarithms of

the raw and estimated death probabilities. The logarithms are used instead of the non-

transformed data, because as qx ∈ [0, 1] calculating the R2 in the regular scale wouldn’t

make much sense. The goodness-to-fit measure is defined according to the following

expression:

R2 = 1− RSS

TSS
= 1−

∑
x

∑
t

[
log(qx,t)− log( ˆqix,t)

]2
∑

x

∑
t [log(qx,t)− log( ¯qx,t)]

2 (4.9)

When combining all models, the R2 is no longer a good point of reference as knowing

which model contributes less or more to the final fit is not that straight forward. There-

fore, once it has been established at an individual level that each model is a good fit the

comparison among them and the combinations will be done using the Squared Sum of

Residuals, which refers only to the part equivalent to RSS in equation 4.9 as follows:

RSS =
∑
x

∑
t

[
log(qx,t)− log( ˆqix,t)

]2
(4.10)

To have a measure of the contribution of each model to the in-sample fitting, all the

combinations of the chosen models will be taken into account for the fit between ages

40-89. As mentioned earlier, only the Lee carter is suitable for ages 90-99. All in all ˆqx,t

can take an array of values given by the model estimations individually or by the model

combinations follows:

ˆqx,t =



qLCx,t +q
CBD
x,t +qP−splinex,t

3

qCBDx,t +qP−splinex,t

2

qLCx,t +q
P−spline
x,t

2
qLCx,t +q

CBD
x,t

2

(4.11)

Finally, to test the accuracy of the forecast, a 10/90 back-testing method will be em-

ployed using the same combinations described in equation 4.10 to compare the projected

and actual values. In this case, the R2 of the forecast will be calculated only when the

models are evaluated individually, and the RSS for all cases to enable comparison.
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4.2 Model for the integration of the population and sample

data

As mentioned earlier, there is not much literature around mortality projection for short

time series, such as the ones that are usually available at the company level; let alone on

how to incorporate sample information to population mortality projections. The model

presented here, formally and fully develops an idea initially suggested by the Heriot-Watt

University professor Iain Currie, in her post on the Longevitas information matrix blog:

”Forecasting with limited portfolio data”. This procedure, called the Piggy-Back model,

aims to make corrections on the population forecast by modeling the differences between

the population and the insured data at each age and year. The gap is modeled via a

generalized linear model regression (GLM) and then added to the original population-

level forecast, to obtain a forecast that approaches that of the insured portfolio.

Figure 4.1: Population and sample mortality behavior
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When observing figures compiled in 4.1, it becomes evident that the mortality level for

both the population and sample data behave linearly with respect to age. Hence, it could

be reasonable to deduct that the gap between both data-sets it behaves approximately

linearly with age. Moreover, when observing the last plot of the compilation, it becomes

clear that a reasonable and very simple assumption to describe the behavior of both

series is that the gaps between them are constant in time. This is a crucial assumption

because it enables the user to adjust the population forecast by the simple expedient

of estimating the aforementioned yearly gaps. Just as in the plots, the size of the gaps

will depend linearly on age and can be modeled using a GLM. These assumptions are

rather strong, nonetheless, they are reasonable when considering the behavior of the

data at hand. Some other assumptions might be needed to improve the outcome for

other data-sets.

Figure 4.2: Piggy-Back procedure
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In general terms, the Piggy-Back procedure can be described graphically with the follow-

ing steps shown in figure 4.2. The first plot portrays the observed population mortality

in black, the observed sample mortality in red, and the forecast (using any of the pro-

cedures described in section 2.1) in orange. For each year where there are observations

for both the population and the sample data the differences ∆i are taken as portrayed

in the second plot. Finally, those differences are modeled (δi) and then used to correct

the initial forecast so that one that follows the trend of the sample data is obtained.

Another assumption that has been maintained when modeling the behavior of the pop-

ulation data, is that the number of deaths follow a Poisson distribution. This is also

further assumed for the behavior of the deaths within the insured portfolio, so that the

outcome is consistent in terms of the underlying distribution. Once all these assumptions

are set in place, the following model for the differences can be derived:

Dx,t ∼ Poisson(λ = ecx,tµ(x, t))

40 ≤ x ≤ 89, 2007 ≤ t ≤ 2016

log(m(x, t)) = α̂x + β̂xk̂t + a0 + a1xx

(4.12)

Dx,t = a0 + a1X + ε (4.13)

As seen in equation 4.12, in the end, the company’s mortality is explained by a combi-

nation of the in-sample fit obtained by a sum of the estimation given by the model at

the population level (Lee-Carter, CBD, P-Splines or any combination) and the result

when modeling the sample deaths via the GLM in equation 4.13. In the case of the

Lee-Carter, the population fit is represented by the segment log(m(x, t)) = α̂x + β̂xk̂t of

the equation2.

Equation 4.13 corresponds to the GLM that regresses as the dependent variable, the

deaths occurred in the insurance portfolio and as an independent variable the vector

of ages 40 to 89. This GLM takes as offsets the level of exposures at each age and

year in the portfolio, as well as the estimates given by the population data for those

same ages and years. In simple terms, the role of the offset is to shift the intercept,

so that the estimation is adapted to both the size of the portfolio and the population

2If the CBD model were to be employed, this segment would be equal to equation 4.7 and in case it
was done for the P-Splines the segment would be equal to equation 4.8, or any of the estimates obtained
with a given combination.
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estimates. It is important to note that this GLM uses a Poisson distribution as the link

function. Therefore, the remainder of the equation 4.12 corresponds to the intercept

and age coefficient of the aforementioned liner model.

Once the modelization is finalized, the sample forecast is simply achieved by taking

the forecasted values of the population model and correcting them with with the com-

putations obtained when utilzing the intercept and slope obtained from the GLM as

follows:

log(m(x, t)) = α̂x + β̂xk̂t + â0 + âixx

40 ≤ x ≤ 89, 2007 ≤ t ≤ 2026
(4.14)

All in all, the model receives its name Piggy-Back because it is piggybacking the com-

pany’s forecast on an existing in sample-fit and forecast at the population level. The

advantage of this model is that even when portfolio data does not support a stand-alone

forecast, a piggyback model should remove some of the basis risk. Even at a higher

level of finesse, several adjustments can be fine-tuned to take account of the different

risks associated with different classes of business without deviating too much of the real

values and causing unnecessary capital costs for the insurer.
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Results

5.1 In-sample fitting and forecasting

The following subsections will show the results obtained for both the in-sample fitting

and forecasting as well as the goodness-to-fit measures described in section 4.1.4. The

results for each method will be shown separately and then combined according to the

combinations described in equation 4.10.

5.1.1 Lee-Carter model results

To perform the fit the R package StMoMo is employed. The Lee-Carter model is fitted

assuming a Poisson distribution, therefore the link is a log function. The mortality rates

estimated by the model are obtained through the fitted function whose argument is an

object in the workspace that contains the model fitted values. In the end all models will

be fitted using a shorter time series than the one available described in section 3.1.1 to

avoid outliers such as the high levels of mortality seen due to the Spanish flu and the

Dutch Potato Riots. The period used for the fit gets reduced to 50 years: from 1957 to

2017.

For the forecast, a bi-variate random walk with drift is used to project the rates for

the future years. In this case, the forecast is done for 10 years, corresponding to the

period 2007-2016. For the statistical inference regarding the parameter uncertainty, a

sample of 1000 projected trajectories are generated using a Poisson distribution with the

52
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parameters obtained when fitting the model to the data. Once the samples are generated,

a Lee-Carter model is fitted to each one of them and extracting the model parameters.

With the said parameters, a random walk with drift is used to make a projection the

rates for the future 10-year period. To obtain the confidence intervals, among the curves

simulated earlier, the ones that belong to the 00.5% and 99.5% quantiles are calculated.

Figure 5.1 shows the fit obtained from the Lee-Carter model for ages 64 to 65. The

actual yearly death probabilities are represented by the circles while the fitted values

are represented by the solid black line. Moreover, the forecasted death rates are depicted

by the solid red line while the confidence interval due to parameter uncertainty is shown

with the dashed red lines.

Figure 5.1: Lee-Carter death probabilities ages 64-66
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From the data, it is visible that at the beginning of the series (years before 1975)

the mortality has a higher variance. This observation could be explained by a lack

of refinement in the data collection methods, which got perfected over time with the

appearance of new technologies. Or due to a larger vulnerability of the population to

external circumstances, as medicine and technologies were less advanced during these

times. All in all, the downward trend of mortality seems to be consistent across all years,

there is a raise in mortality that stands out in 1984. According to Mackenbach et al.

[1991]:

”The relatively high mortality rates in the southern part of The Netherlands,

which dominate the geographical mortality pattern of the country as a whole,

appear to be largely due to cardiovascular diseases. Four cardiovascular dis-

eases, which together account for only 43% of all deaths, account for 86% of

the excess all cause mortality in the South in 1984.”

Regarding the fit, it is quite accurate along with all the series. In the beginning, it is

visible how the fitted values accommodate to the changes in mortality, capturing up

to a certain extent the wider movements of the death rates. For the first part of the

data, the fit is similarly accurate for all ages displayed, it is important to remember

that the goodness-to-fit will vary for every age. When considering the R2 of the model,

the differences between the actual and fitted values across all ages and years are taken

into account. Therefore, better a fit for the younger age groups may compensate for the

lower accuracy at older ages, not penalizing that much the goodness-to-fit of the sample

as a whole.

It is also visible in the confidence intervals the prediction is less trustworthy the further

away in time. This is concluded as the confidence intervals are narrower in the beginning

and get wider in the end yet symmetrical around the prediction. This conclusion is the

usual one. It is natural to expect that the further away from the less ability the historical

data has to predict the events of interest. Finally, the predicted death probabilities are

expected to decrease in the future, meaning that the forecast captures the improvements

in mortality, implying that each cohort will live for more years than the precedent one.
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Figure 5.2: Lee-Carter death probabilities ages 92-94

Figure 5.2 depicts the fit obtained from the Lee-Carter model for ages 92 to 94. Just

as discussed in earlier chapters, data at older ages have a higher variance, making the

fit less accurate. This larger variance occurs as fewer individuals make it to these ages

making the data less reliable in terms of variability. Nonetheless, just as with younger

ages at each age the first part of the time series is more sparse, and then it becomes

less variable towards the end. Moreover, the confidence intervals are somewhat wider

in comparison to those of younger ages, which makes sense as the information for older

ages is more difficult to predict. Also, the slope of the forecast is less steep for older ages,

meaning that the improvements in mortality are predicted to be smaller in comparison

to younger ages.
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Figure 5.3: Observed death probabilities surface per year and ages 40 to 100

Figure 5.4: Lee-Carter fitted death probabilities surface per year and ages 40 to 100
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Figure 5.5: Lee-Carter fitted death probabilities surface per year and ages 40 to 89

Figure 5.6: Lee-Carter fitted death probabilities surface per year and ages 90 to 100

Figure 5.4 shows the full fitted mortality surface for all years and ages. Then, figures

5.5 and 5.6 break the same surface but for ages 40 to 89 and 90 to 100 respectively. The
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solid black lines represented in the figures 5.1 and 5.2 correspond to cross-sections of

this surface, while the dots on the same figures correspond to the surface represented

in figure 5.3 that represents the whole observed mortality surface for all years and ages.

It is visible that mortality increases across ages in a rather stable pattern between ages

40 to 90. Moreover, at older ages the pattern is less clear and from age 100 death

probabilities increase at a higher pace.

When comparing the observed death probabilities with the fitted values in figures 5.3

and 5.4 respectively, it is visible that the fitted mortality is smoother, in other words,

has fewer jumps, than the real values, especially in the second half of the age vector.

This occurs since not all the outliers are captured by the fitted function. In general,

a smoother function is preferable over one that captures every occurrence, otherwise it

will indicate overfitting.

5.1.2 CBD model results

Just as with the previous model, the fit is done using the R package StMoMo. The

CBD model is fitted assuming a Poisson distribution, therefore the link is a log function.

The mortality rates estimated by the model are obtained through the fitted. For the

forecast, a bi-variate random walk with drift is used to project the rates for 10 years

in the future. A bootstrapping technique is used to perform the statistical inference

regarding the parameter uncertainty, with the results of the projected trajectories and

their parameters the 00.5%, and 99.5% quantiles are calculated.

Figure 5.7 represents the fit obtained from the CBD model for ages 40 to 42. Following

the same conventions as in previous graphs, the actual yearly death probabilities are

represented by the circles, the fitted values by the solid black line, the forecasted death

rates by the solid red line, and the confidence interval due to parameter uncertainty by

the dashed red lines. As the observed death probabilities are the same for all models,

figures 5.1 and 5.7 are on the same scale, which is useful to compare both fits visually.

Although all models result in a good fit across all ages and years, for ages 64 to 65,

between 1998 and the end of the sample the CBD model overestimates death probabilities

slightly more in comparison to the Lee-Carter fit. Nonetheless, both fits behave similarly.
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In general, the CBD fitted values tends to overestimate death probabilities across all

years, but this bias is not statistically significant.

Figure 5.7: CBD death probabilities ages 64-66

Just as the Lee-Carter model, the CDB fit captures the changes in mortality, even

portraying up to a certain extent most of the changes in the death rates. The confidence

intervals are of similar width for both models, meaning that there is no significant

difference in terms of parameter uncertainty. Moreover, there is a predicted improvement

in mortality but it is slightly higher than the one predicted by the Lee-Carter fit. All in

all, the model has an outstanding in-sample fit, as well as an excellent forecast accuracy

when calculating a goodness-to-fit statistic based on a 10-year back-testing.



Chapter 5 - Results 60

Figure 5.9 shows the fitted mortality surface for all years and ages 40 to 89, while figure

5.8 represents the whole observed mortality surface for that same age-year space as

follows:

Figure 5.8: Observed death probabilities surface per year and ages 40 to 89

Figure 5.9: CBD fitted death probabilities surface per year and ages 40 to 89
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The figures show how mortality increases across the observed ages. When comparing

the observed death probabilities with the fitted values in both figures, once again, the

fitted mortality is smoother and has less variability across the whole surface. All in all,

the fitted surface mimics quite accurately the observed one.

5.1.3 P-splines model results

For the P-splines in-sample fit the R library MortalitySmooth is employed, here the Pois-

son distribution is utilized. In the end, a two-dimensional P-spline model is fitted with 6

nodes for age and 13 for the year. For the model adjustment, adjust the Mort2Dsmooth

function is used, whose arguments are the ages, the years, a matrix summarizing the

observed deaths, a matrix for the initial exposure to risk as well as the number of nodes.

There is not a standardized way to choose the number of nodes for age and years,

choosing them can be tricky, because if done incorrectly the resulting projections could

be odd. Literature indicates that employing between 10 and 15 nodes usually yields

correct approximations. Frequently the higher the amount of nodes yields a better the

in-sample fit, as there are more individual sections to accommodate each part of the data

more exactly. Nonetheless, a good in-sample fit can lead to overfitting causing trouble

in the forecast. To choose the number of nodes, the in-sample fit is measured through

the AIC criterion; the objective is to minimize it.1

After choosing the number of nodes, the range of years to predict is defined between

1957 to 2026, the algorithm will take the last 10 years of data as missing values, thus

creating a prediction as a result of the smoothing process. The predictions along with

their standard errors are calculated and from that the confidence intervals. Figure 5.10

represents the fit obtained from the P-splines model for ages 64 to 66, following the same

conventions as in previous graphs. Unlike the previous models, this fit is smoother, it is

a differentiable function across all of its dominion. Unlike the previous fits, it manages to

capture the general trend without paying too much attention to the outliers. In general,

if there are not that may extreme values this might be a positive attribute to the fit.

Moreover, the confidence intervals of the prediction are somewhat wider towards the end

than the ones given by the other models.

1To see all the node combinations and their respective goodness to fit measures refer to Appendix B.
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Figure 5.10: P-splines death probabilities ages 64-66

Figure 5.11 shows the fitted mortality surface for all years and ages 40 to 89, when

compared to the observed values in figure 5.8 the smoothness of the fit becomes apparent.

Differentiability and continuity are both desirable properties of the function which tan

be attained when using these types of splines modeling. The fitted surface reflects the

fact that mortality increases across the observed ages.
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Figure 5.11: P-splines fitted death probabilities surface per year and ages 40 to 89

5.1.4 Overall final fitting and forecast

The following figure shows all three in-sample fits for the same age across all years

along with their forecasted confidence intervals, as well as the projections for the model

combinations:

Figure 5.12: Lee-Carter, CBD and P-splines fitted death probability and backtesting
for age 65
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It is important to point out that the confidence intervals can not be easily derived when

combining models, therefore here only the projection is plotted. Here the fit is performed

only until 2015 leaving the last 10 years of data out of the sample to see how they behave

in comparison to the forecast

When observing all three fits back to back, all the models have a relatively good fit

throughout the whole series. Unlike its two counterparts, the P-Splines model cap-

tures the sudden jumps in death probabilities in a softer (more smooth) manner. The

predictions made by all three models result in confidence intervals that overlap. The

projections that have the largest area of the intervals in common are the Lee-Carter and

the CBD models. While the Lee-Carter projection in general predicts higher mortality

rates, the P-splines predicts the lowest ones. This occurs to the fact that the smoothing

technique tries to follow the slope of the downward-curved pattern given by the last 15

years of observations. In general most of the observed mortality data points happen to

be inside the forecasted intervals that were left outside for the modelization depicted in

this figure. It is important to point out that all things considered, all the models and

their combinations behave well and are close to the forecasted values.

The following table shows the goodness-to-fit statistics for the in-sample modelling as

well as the forecast for the individual models, calculated according to equation 4.9:

Model In-sample R2 Forecast R2

LCO 0.9232655 0.9677311

LCY 0.9989670 0.9947542

LC(Y+O) 0.9990588 0.9969759

CBDY 0.9970984 0.9943769

PSY 0.9985459 0.9905307

Table 5.1: Goodness-to-fit for the different individual models. The subscript Y means
that the fit has been done for the young ages (40-89), while the subscript O means that
the fit has been done for old ages (90-100). LC and PS refer to the Lee-Carter and

P-Splines models respectively.

Lastly, the following table lists the RSS for the in-sample modelling as well as the fore-

casted series for the individual models and their combinations as described in equation

4.10. The residual sum of squares is calculated according to equation 4.10:
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Model(s) In-sample RSS Forecast RSS

LCO 3.769604 0.2699137

LCY 6.094333 4.653584

PSY 9.423546 7.53237

CBDY 18.80440 6.25437

PSY + CBDY 9.723201 5.834666

LCY + CBDY 8.532539 5.327389

LCY + PSY 6.156271 4.270949

LCY + PSY + CBDY 7.008102 4.728295

Table 5.2: Residual sum of squares for the different individual models.

As discussed earlier, all three models can be used to smooth q(x; t) for ages 40 to 89

years, while for ages 90 to 95 years, only the Lee-Carter can be used, since the CBD and

P-splines can not be employed for advanced ages. Therefore the individual and combined

fits and forecasts are tested individually for young ages only (40 to 89) and in the case of

the Lee-Cater for the whole series (40 to 95). Due to the higher variability of data at old

ages, the Lee-Carter in sample fit can explain 96% of the changes in the data. In general

terms, all fits are excellent. For the individual models, at young ages, the highest in-

sample fit is achieved by the Lee-Carter model (LCY ). Finally, for the forecast, the best

fit across young ages is achieved by the Lee-Carter model alone (LCY ). Nonetheless, as

seen by the R2 the goodness-to-fit differs by a matter of centesimal places, meaning that

all explain more of the 95% of the changes in the data.

When comparing the RSS between the models and their combinations, the Lee-Carter

alone appears to be superior in terms of the in-sample fit, while the Combination of

the Lee-Cater and the P-Splines seems to yield a better forecast, although its quadratic

residual is only slightly higher than that of the Lee-Carter model. The RSS for older

ages is significantly lower compared to those of younger ages, but this occurs simply

because there are fewer observations in the older segment, therefore less adding terms.

Due to its high performance, the Lee-Carter forecast and in-sample estimation will be

chosen as the base to perform the integration of the sample and population data.
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5.2 Results when integrating population and sample data

After performing the procedure described in section 4.2 when selecting the Lee-Carter

in-sample fitting coefficients and forecast, the following plots are obtained:

Figure 5.13: Sample forecast ages 64-66

Here, the observed population mortality is shown in black, the observed sample mortality

in red, and the forecast using the Lee-Carter model in orange. The data points shown

in blue, correspond to the estimations using the coefficients obtained when fitting the

GLM in equation 4.13. Both sets of data points, that refer to the observed and the

fitted values (red and blue) overlap almost perfectly, meaning that the GLM manages to

explain the differences between the population and the sample series very well. Finally,
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the dashed red line corresponds to the forecast of the insured sample shown in equation

4.14. The forecast for the sample is slightly more steep than the one of the general

population, meaning that the insured clients are expected to have larger improvements

in their mortality level when compared to the total population. Moreover, the sample

forecast represents a reasonable outcome when seen in the context of both the population

and the sample data. It takes into account the sample size of the insured portfolio via

the offset parameter and also the trends of both the insured population series as well

as the Lee-Carter prediction. In general, the outcome of the integration proves to be

satisfacotry
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Conclusions

Evaluating and forecasting stochastic variables such as the mortality rates is not a simple

task. There is always uncertainty in the forecasts, therefore insurers seek prudence and

despite allowing for this uncertainty, resort to other methods to ensure confidence in

their outcomes. For instance, they discount the predicted mortality weighed payments

employing lower interest rates or set surcharges on the mortality predictions. These

actions naturally have financial implications for the pricing and reserving of annuities

and pensions. In most cases, these procedures promote the regulator’s interests at the

expense of those of the companies and do not show the real situation of the insurer and

its business portfolio.

Moreover, predicting the behavior of the insured population is difficult due to the re-

duced length of the data-sets at hand, so the pragmatic approaches described earlier are

employed by the insurers. Research on how to accurately forecast the mortality trends of

the insured population is pretty limited, despite it being a subject of exceptional impor-

tance. This document has presented an alternative way of projecting insured mortality

by piggybacking the company’s forecast on an existing in sample-fit and forecast at the

population level. This approach results in a reasonable and trustworthy forecast that

could mean an alternative to the insurers avoiding them unnecessary capital costs when

calculating their solvency capital requirements.

All in all, it is shown that when analyzing historical mortality patterns form the Nether-

lands, all the models employed (The Lee-Carter, CBD, and P-splines) result in a good

68
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in-sample fit and forecast. Moreover, the methodology proposed to correct the popu-

lation mortality forecast, based on the differences of common sample points, so that it

resembles the trend of the insured portfolio, appears as adequate. By implementing the

model suggested in this document, it is possible to take advantage of the larger extension

of the population-level data and pool the accuracy of the forecasts stemming from those

longer series to generate a reasonable and reliable forecast at the sample-level.



Appendix A

Two-dimensional Kronecker

product cubic B-spline basis

This figure is taken form Currie et al. [2004]. It shows an example of a bi-dimensional

B-splines base. This figure is analogous to the process illustrated previously in one

dimension in figures 2.1 and 2.2.

”The age–year grid is populated by a set of overlapping hills which are placed

at regular intervals over the region. Each hill is the Kronecker product of two

one-dimensional hills (B-splines), one in age and one in year. For clarity,

only a subset of hills from a small basis is shown in [the figure], but in practice

there are about 200 such hills which give a dense covering of the age–year

region, and this results in a flexible basis for two-dimensional regression.”

(Currie, Durban, and Eilers [2004]; pages 8-9).

Figure A.1: Example of a third degree bi-dimensional B-spline: It is made up of
pieces of cubic polynomial surfaces. The y axis corresponds to the mortality rate.
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P-Splines node selection

This table depicts all the in-sample goodness-to-fit as well as the forecast R2 form

the backtesting procedure. All the possible combinations between 2 and 15 nodes for

both age and year were tested. To choose the optimal number of nodes the aim is to

maximize the BIC while having a relatively high R2 for the forecast. In the end the

chosen combination was 4 nodes for the age dimension and 15 for the year dimension.

Age Nodes Year Nodes In-sample BIC

2 2 8087.204

3 2 7831.392

4 2 7838.926

5 2 7855.739

6 2 7870.809

7 2 7887.129

8 2 7903.234

9 2 7918.751

10 2 7925.654

11 2 7937.392

12 2 7949.696

13 2 7960.847

14 2 7972.937

15 2 7976.975

2 3 7229.560
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Age Nodes Year Nodes In-sample BIC

3 3 6978.473

4 3 6952.902

5 3 6976.183

6 3 6993.589

7 3 7020.617

8 3 7045.936

9 3 7072.457

10 3 7085.389

11 3 7105.143

12 3 7122.973

13 3 7140.968

14 3 7155.483

15 3 7167.930

2 4 5061.206

3 4 4738.994

4 4 4725.748

5 4 4743.726

6 4 4758.990

7 4 4791.990

8 4 4819.271

9 4 4844.970

10 4 4861.891

11 4 4881.155

12 4 4903.416

13 4 4916.635

14 4 4932.792

15 4 4941.501

2 5 5036.770

3 5 4677.186

4 5 4696.006

5 5 4693.806

6 5 4713.969
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Age Nodes Year Nodes In-sample BIC

7 5 4738.276

8 5 4754.183

9 5 4766.440

10 5 4770.618

11 5 4774.403

12 5 4784.261

13 5 4784.791

14 5 4787.234

15 5 4791.334

2 6 5153.044

3 6 4826.065

4 6 4795.663

5 6 4805.898

6 6 4789.207

7 6 4805.782

8 6 4813.563

9 6 4826.726

10 6 4826.390

11 6 4834.367

12 6 4838.834

13 6 4838.023

14 6 4842.991

15 6 4850.023

2 7 5042.262

3 7 4716.478

4 7 4689.197

5 7 4671.675

6 7 4666.627

7 7 4676.771

8 7 4687.985

9 7 4695.425

10 7 4699.759

11 7 4708.355
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Age Nodes Year Nodes In-sample BIC

12 7 4706.530

13 7 4709.123

14 7 4717.085

15 7 4721.690

2 8 4768.422

3 8 4439.611

4 8 4411.054

5 8 4393.442

6 8 4380.428

7 8 4391.788

8 8 4404.079

9 8 4408.108

10 8 4413.867

11 8 4419.515

12 8 4419.226

13 8 4423.075

14 8 4431.924

15 8 4431.344

2 9 4868.332

3 9 4546.049

4 9 4515.569

5 9 4494.023

6 9 4475.148

7 9 4489.640

8 9 4502.268

9 9 4504.793

10 9 4512.613

11 9 4512.210

12 9 4513.990

13 9 4520.171

14 9 4529.217

15 9 4523.935

2 10 4901.413
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Age Nodes Year Nodes In-sample BIC

3 10 4580.767

4 10 4532.847

5 10 4506.330

6 10 4486.599

7 10 4497.254

8 10 4511.556

9 10 4512.946

10 10 4520.686

11 10 4523.520

12 10 4525.239

13 10 4530.500

14 10 4538.892

15 10 4533.531

2 11 4825.742

3 11 4508.142

4 11 4453.606

5 11 4430.945

6 11 4411.936

7 11 4420.726

8 11 4433.894

9 11 4435.161

10 11 4444.416

11 11 4445.031

12 11 4446.501

13 11 4452.469

14 11 4462.747

15 11 4458.193

2 12 4748.511

3 12 4434.104

4 12 4391.660

5 12 4373.216

6 12 4354.537

7 12 4362.389
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Age Nodes Year Nodes In-sample BIC

8 12 4374.180

9 12 4376.974

10 12 4388.075

11 12 4386.104

12 12 4388.617

13 12 4395.493

14 12 4403.266

15 12 4399.418

2 13 4695.891

3 13 4382.127

4 13 4358.371

5 13 4344.639

6 13 4327.145

7 13 4333.962

8 13 4343.226

9 13 4349.380

10 13 4362.496

11 13 4355.204

12 13 4361.126

13 13 4369.267

14 13 4368.924

15 13 4366.774

2 14 4764.321

3 14 4458.377

4 14 4430.924

5 14 4406.335

6 14 4388.460

7 14 4398.418

8 14 4413.169

9 14 4413.574

10 14 4423.517

11 14 4425.532

12 14 4426.654
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Age Nodes Year Nodes In-sample BIC

13 14 4432.346

14 14 4442.935

15 14 4438.239

2 15 4777.333

3 15 4476.214

4 15 4418.124

5 15 4398.097

6 15 4381.028

7 15 4389.767

8 15 4403.324

9 15 4404.060

10 15 4414.576

11 15 4414.265

12 15 4415.618

13 15 4421.439

14 15 4432.076

15 15 4429.694

Table B.1: In-sample goodness-to-fit for all possible combinations between 2 and 15
nodes for both year and age.
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R code and documentation

C.1 Loading the data

#Set the directory.

setwd("~/UC3M/TFM/Datos_Poblacionales")

# Environment until line 693

load("~/UC3M/TFM/Datos_Poblacionales/Environment_Thesis_script.RData")

#Sets the bottom , left , top and right margins respectively .

par(mar = c(4, 4.5, 4, 2))

par(mfrow=c(1,1))

#Read the entire data base corresponding to years 1910 -2016.

Dx_T_NL <- read.delim("Dx_NL.txt", header=F)

Exp_T_NL <- read.delim("Ex_NL.txt", header=F)

lx_T_NL <- read.delim("lx_NL.txt", header=F)

Dx_T_NL2 <-Dx_T_NL[!is.na(Dx_T_NL)]

Exp_T_NL2 <-Exp_T_NL[!is.na(Exp_T_NL)]

lx_T_NL2 <-lx_T_NL[!is.na(lx_T_NL)]

Dth_1<-matrix(Dx_T_NL2 ,111 ,107)

Exp_1<-matrix(Exp_T_NL2 ,111 ,107)

lx_1<-matrix(lx_T_NL2 ,111 ,107)

#Define the age interval. All three models are applied simultaneously to ages
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#40 -90 and only the Lee Carter can be used to adjust advanced ages.

Dth=Dth_1[41:111 ,]

Exp=Exp_1[41:111 ,]

lx=lx_1[41:111 ,]

death=Dth

exposure=Exp

Age <- 40:110

Year <- 1910:2016

ages <-40:110

years <-1910:2016

C.2 EDA

#Graph: Number of deaths.

matplot (0:110 ,Dx_T_NL ,type="l",lty=3,col=c(rep("gold" ,10),rep("gold3" ,10),

rep("orange" ,10),rep("orange2" ,10),rep("darkorange" ,10),rep("darkorange3" ,10),

rep(’tomato ’ ,10),rep("tomato3" ,10),rep("red" ,10),rep("red3" ,10),rep("red4" ,7)),

ylim=c(0,6000) ,cex.axis =0.8, main="Total number of deaths",ylab="Deaths",xlab="Age")

legend (7,6000, legend=c("1910 -1919","1920 -1929","1930 -1939","1940 -1949","1950 -1959",

"1960 -1969","1970 -1979","1980 -1989","1990 -1999","2000 -2009","2010 ,2016"),cex=0.7,

lty=3,col=c("gold","gold3","orange","orange2","darkorange","darkorange3",’tomato ’,

"tomato3","red","red3","red4"))

#Graph: Mortality rates

matplot (0:100 , log(Dx_T_NL[1:101 ,]/lx_T_NL[1:101 ,]) , type="l",lty=3,

col=c(rep("gold" ,10),rep("gold3" ,10),rep("orange" ,10),rep("orange2" ,10),

rep("darkorange" ,10), rep("darkorange3" ,10),rep(’tomato ’ ,10),

rep("tomato3" ,10),rep("red" ,10),rep("red3" ,10),rep("red4" ,7)),xlab="Age",

ylim=c(-10,0), main="Death probablities (log scale)",ylab="ln(qxt)")

legend(70,-6,legend=c("1910 -1919","1920 -1929","1930 -1939","1940 -1949","1950 -1959",

"1960 -1969","1970 -1979","1980 -1989","1990 -1999","2000 -2009","2010 ,2016"),cex=0.7,

lty=3,col=c("gold","gold3","orange","orange2","darkorange","darkorange3",’tomato ’,

"tomato3","red","red3","red4"))

#Average raw mortality per age.

raw_mort_EDA <-Dx_T_NL[1:101 ,]/lx_T_NL[1:101 ,]
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raw_mort_EDA <-t(raw_mort_EDA)

colMeans(raw_mort_EDA)

#Variance of the raw mortality per age.

var <-c()

for (i in 1:101){

var[length(var )+1] = var(raw_mort_EDA[,i])

}

plot (0:100 , sqrt(var))

C.3 Lee Carter

#Modify the data matrices , the series as it is is too long and it might

#affect the fit , therefore it is limited to the past 60 years of information

# selecting only the time frame 1957 -2016.

Dth=Dth_1[41:111 ,48:107]

Exp=Exp_1[41:111 ,48:107]

lx=lx_1[41:111 ,48:107]

death=Dth

exposure=Exp

Age <- 40:110

Year <- 1957:2016

ages <-40:110

years <-1957:2016

#The data is introduced so that it can be recognized by the StMoMo library ,

#making use of the EWMaleData object which is already built in.

library(StMoMo)

NLData=EWMaleData

NLData$years=years

NLData$ages=ages

NLData$Dxt=Dth

NLData$Ext=lx

NLData$series="total"

NLData$label="Netherlands"

#MODEL FITTING
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#The Lee -Carter model is fitted assuming a Poisson distribution ,

#so the link is log.

LCfit_NL <- fit(link="log",lc(), data = NLData)

#The mortality rates estimated by the Lee -Carter model are obtained using the

#"fitted" function whose argument is an object that contains the model fit.

#Since the type = "rates" we get directly the fitted probablities .

#If the type = "link" we would get directly the outcome of the alpha + (beta*Kappa)

mxtHat_NL <- fitted(LCfit_NL , type = "rates")

#We use a bi -variate random walk with drift to project the rates for

#the future years (in this case 10). The argument h = 10 indicates the

#number of years we want to predict. For the forecast function , when the

#argument is an object of class "fitStMoMo " by default adjusts a random

#walk with drift.

LCfor_NL=forecast(LCfit_NL,h=10)

#The projected mortality is obtained.

mxtCentral_NL <- LCfor_NL$rates

# INFERENCE INCLUDING UNCERTAINTY ABOUT THE PARAMETERS

#1000 values of a Poisson distribution are generated with the parameters obtained

#when fitting the model to the data.

#Once the samples are generated , a Lee -Carter model is fitted to each simulation ,

# obtaining the model parameters for each.

LCboot_NL=bootstrap(LCfit_NL,nBoot =1000 , type="semiparametric")

#With the parameters that have been obtained , a random walk with drift is used to

#make a porjection the rates for the future years (10 in this case ).

LCsimPU_NL=simulate(LCboot_NL,h=10)

# CALCULATION OF CONFIDENCE INTERVALS AT 99.5%

#Among the simulations above we calculate the curves such that the results are

#between 99.5% of them.

# Calculation of the intervals for the sample.

mxtHatPU0 .05_NL <- apply(LCsimPU_NL$fitted , c(1, 2), quantile , probs = 0.005)
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mxtHatPU99 .5_NL <- apply(LCsimPU_NL$fitted , c(1, 2), quantile , probs = 0.995)

# Calculation of the intervals for the predictions .

mxtPredPU0 .05_NL <- apply(LCsimPU_NL$rates , c(1, 2), quantile , probs = 0.005)

mxtPredPU99 .5_NL <- apply(LCsimPU_NL$rates , c(1, 2), quantile , probs = 0.995)

raw_mort <- NLData$Dxt/NLData$Ext

colnames(raw_mort) <- years

rownames(raw_mort) <- ages

#GRAPHS

#40 -49 -> for(i in 41:50) | 50 -59 -> for(i in 51:60) | 60 -69 -> for(i in 61:70) |

#70 -79 -> for(i in 71:80) | 80 -89 -> for(i in 81:90) | 90 -99 (old) ->

#for(i in 91:100)

par(mfrow=c(5,2))

for(i in 41:50) {

fitted_mxt_x<-mxtHat_NL[i-40,]

projected_mxt_x<-mxtCentral_NL[i-40,]

projected_mxt_x_0.05 <-mxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5 <-mxtPredPU99 .5_NL[i-40,]

plot (1957:2016 , fitted_mxt_x,type = "l",

ylim=c(min(fitted_mxt_x,projected_mxt_x_0.05,

projected_mxt_x_99.5, projected_mxt_x,raw_mort[i-40,]),

max(fitted_mxt_x,projected_mxt_x_0.05,

projected_mxt_x_99.5, projected_mxt_x,raw_mort[i-40,])), xlim=c(1957, 2026),

xlab="Year", ylab="Death probability",

main = paste ("Lee -Carter fitted and projected yearly death probability for age",

i-1))

points (1957:2016 , raw_mort[i-40,])

lines (2017:2026 , projected_mxt_x, col="red")

lines (2017:2026 , projected_mxt_x_0.05, col="red", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5, col="red", lty="dashed")

}

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#Fit for ages 64 -66

par(mfrow=c(3,1))

for(i in 65:67) {

fitted_mxt_x<-mxtHat_NL[i-40,]

projected_mxt_x<-mxtCentral_NL[i-40,]

projected_mxt_x_0.05 <-mxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5 <-mxtPredPU99 .5_NL[i-40,]
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plot (1957:2016 , fitted_mxt_x,type = "l",

ylim=c(min(fitted_mxt_x,projected_mxt_x_0.05, projected_mxt_x_99.5,

projected_mxt_x,raw_mort[i-40,]),max(fitted_mxt_x,projected_mxt_x_0.05,

projected_mxt_x_99.5, projected_mxt_x,raw_mort[i-40,])),

xlim=c(1957, 2026) , xlab="Year", ylab="Death probability",

main = paste ("Lee -Carter fitted and projected yearly death probability for age",

i-1))

points (1957:2016 , raw_mort[i-40,])

lines (2017:2026 , projected_mxt_x, col="red")

lines (2017:2026 , projected_mxt_x_0.05, col="red", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5, col="red", lty="dashed")

}

#Fit for ages 93 -94.

par(mfrow=c(3,1))

for(i in 93:95) {

fitted_mxt_x<-mxtHat_NL[i-40,]

projected_mxt_x<-mxtCentral_NL[i-40,]

projected_mxt_x_0.05 <-mxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5 <-mxtPredPU99 .5_NL[i-40,]

plot (1957:2016 , fitted_mxt_x,type = "l",

ylim=c(min(fitted_mxt_x,projected_mxt_x_0.05, projected_mxt_x_99.5,

projected_mxt_x,raw_mort[i-40,]),max(fitted_mxt_x,

projected_mxt_x_0.05, projected_mxt_x_99.5, projected_mxt_x,raw_mort[i-40,])),

xlim=c(1957, 2026) , xlab="Year", ylab="Death probability",

main = paste ("Lee -Carter fitted and projected yearly death probability for age",

i-1))

points (1957:2016 , raw_mort[i-40,])

lines (2017:2026 , projected_mxt_x, col="red")

lines (2017:2026 , projected_mxt_x_0.05, col="red", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5, col="red", lty="dashed")

}

#3D surface Full (40:100) actual values.

par(mfrow=c(1,1))

persp(ages [1:61] , years , raw_mort [1:61,], phi = 30, theta = -30, col = "white",

xlab = "Age", ylab = "Year" , zlab ="Death probablility",

main = "Lee -Carter observed death probabilities surface per year and ages 40 to 100")

#3D surface Full (40:100) fitted values.

par(mfrow=c(1,1))

persp(ages [1:61] , years , mxtHat_NL[1:61,], phi = 30, theta = -30, col = "white",

xlab = "Age", ylab = "Year" , zlab ="Death probablility",

main = "Lee -Carter fitted death probabilities surface per year and ages 40 to 100")

#3D surface 40:89 fitted values.

par(mfrow=c(1,1))

persp(ages [1:50] , years , mxtHat_NL[1:50,], phi = 30, theta = -30, col = "white",
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xlab = "Age", ylab = "Year" , zlab ="Death probablility",

main = "Lee -Carter fitted death probabilities surface per year and ages 40 to 89")

#3D surface 90:111 (old) fitted values.

par(mfrow=c(1,1))

persp(ages [51:61] , years , mxtHat_NL[51:61 ,] , phi = 30, theta = -30, col = "white",

xlab = "Age", ylab = "Year" , zlab ="Death probablility" ,

main = "Lee -Carter fitted death probabilities surface per year and ages 90 to 100")

C.4 CBD

#Ages are restricted for the range between 40-90, since the CBD model

#will only be applied in this range and also only the time frame

#between 1957 -2016.

Dth_2=Dth_1[41:90 ,48:107]

Exp_2=Exp_1[41:90 ,48:107]

lx_2=lx_1[41:90 ,48:107]

death_2=Dth_2

exposure_2=Exp_2

Age_2 <- 40:89

Year_2 <- 1957:2016

ages_2 <- 40:89

years_2 <- 1957:2016

#The data is introduced so that it can be recognized by the StMoMo library ,

#making use of the EWMaleData object which is already built in.

NLData_2= NLData

NLData_2$years=years_2

NLData_2$ages=ages_2

NLData_2$Dxt=Dth_2

NLData_2$Ext=lx_2

NLData_2$series="total"

NLData_2$label="Netherlands"

#MODEL FITTING

#The CBD model is fitted assuming a Poisson dustribution , so the link is log.

#We use the "fit" function of the StMoMo library.

#The only argument to specify is the link function and the data base.
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CBDfit_NL <- fit(link="log",cbd(), data =NLData_2)

#The mortality rates estimated by the Lee -Carter model are obtained

#using the "fitted" function whose argument is an object that contains

#the model fit.

#Since the type = "rates" we get directly the fitted probablities .

#If the type = "link" we would get directly the outcome of the alpha + (beta*Kappa ).

CBDmxtHat_NL <- fitted(CBDfit_NL, type = "rates")

#We use a bi -variate random walk with drift to project the rates for

#the future years (in this case 10). The argument h = 10 indicates the

#number of years we want to predict.

#For the forecast function , when the argument is an object of class

#"fitStMoMo " by default adjusts a random wal with drift.

CBDfor_NL=forecast(CBDfit_NL,h=10)

#The projected mortality is obtained.

CBDmxtCentral_NL <- CBDfor_NL$rates

# INFERENCE INCLUDING UNCERTAINTY ABOUT THE PARAMETERS

#1000 values of a Poisson distribution are generated with the

# parameters obtained when fitting the model to the data.

#Once the samples are generated , a Lee -Carter model is fitted to

#each simulation , obtaining the model parameters for each.

CBDboot_NL=bootstrap(CBDfit_NL ,nBoot =1000, type="semiparametric")

#With the parameters that have been obtained , a random walk with drift

#is used to make a porjection the rates for the future years (10 in this case ).

CBDsimPU_NL=simulate(CBDboot_NL,h=10)

# CALCULATION OF CONFIDENCE INTERVALS AT 99.5%

#Among the simulations above we calculate the curves such that

#the results are between 99.5% of them.

# Calculation of the intervals for the sample.

CBDmxtHatPU0 .05_NL <- apply(CBDsimPU_NL$fitted , c(1, 2), quantile , probs = 0.005)

CBDmxtHatPU99 .5_NL <- apply(CBDsimPU_NL$fitted , c(1, 2), quantile , probs = 0.995)
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# Calculation of the intervals for the predictions .

CBDmxtPredPU0 .05_NL <- apply(CBDsimPU_NL$rates , c(1, 2), quantile , probs = 0.005)

CBDmxtPredPU99 .5_NL <- apply(CBDsimPU_NL$rates , c(1, 2), quantile , probs = 0.995)

raw_mort_2 <- NLData_2$Dxt/NLData_2$Ext

colnames(raw_mort_2) <- years_2

rownames(raw_mort_2) <- ages_2

#GRAPHS

#40 -49 -> for(i in 41:50) | 50 -59 -> for(i in 51:60) | 60 -69 -> for(i in 61:70) |

#70 -79 -> for(i in 71:80) | 80 -89 -> for(i in 81:90) | 90 -99 (old) ->

#for(i in 91:100)

par(mfrow=c(5,2))

for(i in 41:50) {

fitted_mxt_x_CBD <-CBDmxtHat_NL[i-40,]

projected_mxt_x_CBD <-CBDmxtCentral_NL[i-40,]

projected_mxt_x_0.05_CBD <-CBDmxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5_CBD <-CBDmxtPredPU99 .5_NL[i-40,]

plot (1957:2016 , fitted_mxt_x_CBD ,type = "l",

ylim=c(min(fitted_mxt_x_CBD ,projected_mxt_x_0.05_CBD ,

projected_mxt_x_99.5_CBD ,projected_mxt_x_CBD ,raw_mort_2[i-40,]),

max(fitted_mxt_x_CBD ,projected_mxt_x_0.05_CBD ,projected_mxt_x_99.5_CBD ,

projected_mxt_x_CBD ,raw_mort_2[i-40,])), xlim=c(1957, 2026) ,

xlab="Year", ylab="Death probability",

main = paste ("CBD fitted and projected yearly death probability for age", i-1))

points (1957:2016 , raw_mort_2[i-40,])

lines (2017:2026 , projected_mxt_x_CBD , col="red")

lines (2017:2026 , projected_mxt_x_0.05_CBD , col="red", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5_CBD , col="red", lty="dashed")

}

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#Fit for ages 64 -66

par(mfrow=c(3,1))

for(i in 65:67) {

fitted_mxt_x_CBD <-CBDmxtHat_NL[i-40,]

projected_mxt_x_CBD <-CBDmxtCentral_NL[i-40,]

projected_mxt_x_0.05_CBD <-CBDmxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5_CBD <-CBDmxtPredPU99 .5_NL[i-40,]

plot (1957:2016 , fitted_mxt_x_CBD ,type = "l",

ylim=c(min(fitted_mxt_x_CBD ,projected_mxt_x_0.05_CBD ,
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projected_mxt_x_99.5_CBD ,projected_mxt_x_CBD ,raw_mort_2[i-40,]),

max(fitted_mxt_x_CBD ,projected_mxt_x_0.05_CBD ,projected_mxt_x_99.5_CBD ,

projected_mxt_x_CBD ,raw_mort_2[i-40,])), xlim=c(1957, 2026) ,

xlab="Year", ylab="Death probability",

main = paste ("CBD fitted and projected yearly death probability for age", i-1))

points (1957:2016 , raw_mort_2[i-40,])

lines (2017:2026 , projected_mxt_x_CBD , col="red")

lines (2017:2026 , projected_mxt_x_0.05_CBD , col="red", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5_CBD , col="red", lty="dashed")

}

#3D surface Full (40:89) actual values

par(mfrow=c(1,1))

persp(ages_2, years_2, raw_mort_2, phi = 30, theta = -30, col = "white",

xlab = "Age", ylab = "Year" , zlab ="Death probability",

main = "Observed death probabilities surface per year and ages 40 to 89")

#3D surface 40:89

par(mfrow=c(1,1))

persp(ages_2, years_2, CBDmxtHat_NL , phi = 30, theta = -30, col = "white",

xlab = "Age", ylab = "Year" , zlab ="Death probability",

main = "CBD fitted death probabilities surface per year and ages 40 to 89")

C.5 P-splines

library(MortalitySmooth)

# We call the function my.predict which is a slight modification of the

#predict function that is included in R, which leads to tighter

# confidence intervals .

source("my.predict.R")

#Find the optimal combination of nodes minimizing the BIC.

model_bic = c()

nodos_edad = c()

nodos_yrs = c()

for(j in 2:15){

for(i in 2:15){

fitBIC3 <- Mort2Dsmooth(x=ages_2, y=years_2, Z=death_2 ,

offset=log(exposure_2),ndx=c(i,j))

model_bic[length(model_bic )+1] = fitBIC3$bic
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nodos_edad[length(nodos_edad )+1] = i

nodos_yrs[length(nodos_yrs )+1] = j

}

}

results <- cbind(nodos_edad ,nodos_yrs ,model_bic)

min(model_bic) # Corresponds to 6 for the age and 13 for the years.

#We fit a two - dimensional P-spline model with 3 nodes for age and 13 for year.

#In this case we are working with a Poisson distribution

#To fit the model we use the function " Mort2Dsmooth " whose arguments are

#the ages , the years , the matrix of deaths and initial risk exposure.

#It is necessary to choose correclty the number of nodes for the age and years.

#This could be something complex because the resulting projections could be odd.

#Between 10 and 15 generally yields a good forecast.

fitBIC3 <- Mort2Dsmooth(x=ages_2, y=years_2, Z=death_2 ,offset=log(exposure_2),

ndx=c(6 ,13))

#We define the range of years to predict.

newyears <- 1957:2026

#We create the new dataset on which we want to make predictions .

newdata <- list(x=ages_2, y=newyears)

# We calculate predictions employing the predict and my.predict functions ,

#the first one is used to obtain the prediction itself while the second one

#gives the standard error of the prediction .

# The se.fit argument allows us to object to standard errors for the

#linear predictor .

pre.for3 <- my.predict(fitBIC3 , newdata=newdata , se.fit=TRUE)

pre.for2=predict(fitBIC3 , newdata=newdata , se.fit=TRUE)

#mx of the P-Spline and its t r a n s f o r m a c i n to qx

PSqxtHat_NL <-exp(pre.for3$fit)

PSqxtHat_NL=1-exp(-PSqxtHat_NL)

# CALCULATION OF CONFIDENCE INTERVALS AT 99.5%

pre.for3_0.05_NL=exp(pre.for3$fit -2.57*pre.for3$se.fit)

pre.for3_0.05_NL=1-exp(-pre.for3_0.05_NL)

pre.for3_99.5_NL=exp(pre.for3$fit +2.57*pre.for3$se.fit)

pre.for3_99.5_NL=1-exp(-pre.for3_99.5_NL)
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#GRAPHS

#40 -49 -> for(i in 41:50) | 50 -59 -> for(i in 51:60) | 60 -69 -> for(i in 61:70) |

#70 -79 -> for(i in 71:80) | 80 -89 -> for(i in 81:90) | 90 -99 (old) ->

#for(i in 91:100)

par(mfrow=c(5,2))

for(i in 41:50) {

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2026) ,

ylim = c(min(PSqxtHat_NL[i-40,],pre.for3_0.05_NL[i-40 ,61:70]) ,

max(raw_mort_2[i-40,])),

xlab="Year", ylab="Death probability",

main = paste ("P-splines fitted and projected yearly death probability for age",

i-1))

lines(years_2, PSqxtHat_NL[i-40 ,1:60])

lines (2017:2026 , PSqxtHat_NL[i-40, 61:70] , col="red")

lines (2017:2026 , pre.for3_0.05_NL[i-40 ,61:70] , col="red", lty="dashed")

lines (2017:2026 , pre.for3_99.5_NL[i-40 ,61:70] , col="red", lty="dashed")

}

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#Fit for ages 64 -66

par(mfrow=c(3,1))

for(i in 65:67) {

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2026) ,

ylim = c(min(PSqxtHat_NL[i-40,],pre.for3_0.05_NL[i-40 ,61:70]) ,

max(raw_mort_2[i-40,])),

xlab="Year", ylab="Death probability",

main = paste ("P-splines fitted and projected yearly death probability for age",

i-1))

lines(years_2, PSqxtHat_NL[i-40 ,1:60])

lines (2017:2026 , PSqxtHat_NL[i-40, 61:70] , col="red")

lines (2017:2026 , pre.for3_0.05_NL[i-40 ,61:70] , col="red", lty="dashed")

lines (2017:2026 , pre.for3_99.5_NL[i-40 ,61:70] , col="red", lty="dashed")

}

#3D surface fitted values 40:89

par(mfrow=c(1,1))

persp(ages_2, years_2, PSqxtHat_NL[,1:60], phi = 30, theta = -30, col = "white",

xlab = "Age", ylab = "Year" , zlab ="Death probability",

main = "P-splines fitted mortality rate surface per year and ages 40 to 89")
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C.6 Comparative Graphs

par(mfrow=c(1,1))

i <- 61

fitted_mxt_x<-mxtHat_NL[i-40,]

projected_mxt_x<-mxtCentral_NL[i-40,]

projected_mxt_x_0.05 <-mxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5 <-mxtPredPU99 .5_NL[i-40,]

plot (1957:2016 , fitted_mxt_x,type = "l",

col="gold",ylim=c(min(fitted_mxt_x,projected_mxt_x_0.05,

projected_mxt_x_0.05_CBD ,pre.for3_0.05_NL[i-40 ,61:70] ,

projected_mxt_x,raw_mort[i-40,]),

max(fitted_mxt_x,projected_mxt_x_0.05, projected_mxt_x_99.5,

projected_mxt_x,raw_mort[i-40,])), xlim=c(1957 , 2026),

xlab="Year", ylab="Death probability",

main = paste ("Lee -Carter , CBD and P-splines fitted and projected yearly

death probability for age", i-1))

points (1957:2016 , raw_mort[i-40,])

lines (2017:2026 , projected_mxt_x, col="gold")

lines (2017:2026 , projected_mxt_x_0.05, col="gold", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5, col="gold", lty="dashed")

fitted_mxt_x_CBD <-CBDmxtHat_NL[i-40,]

projected_mxt_x_CBD <-CBDmxtCentral_NL[i-40,]

projected_mxt_x_0.05_CBD <-CBDmxtPredPU0 .05_NL[i-40,]

projected_mxt_x_99.5_CBD <-CBDmxtPredPU99 .5_NL[i-40,]

lines (1957:2016 , fitted_mxt_x_CBD , col="orange")

lines (2017:2026 , projected_mxt_x_CBD , col="orange")

lines (2017:2026 , projected_mxt_x_0.05_CBD , col="orange", lty="dashed")

lines (2017:2026 , projected_mxt_x_99.5_CBD , col="orange", lty="dashed")

lines(years_2, PSqxtHat_NL[i-40 ,1:60] , col="tomato3")

lines (2017:2026 , PSqxtHat_NL[i-40, 61:70] , col="tomato3")

lines (2017:2026 , pre.for3_0.05_NL[i-40 ,61:70] , col="tomato3", lty="dashed")

lines (2017:2026 , pre.for3_99.5_NL[i-40 ,61:70] , col="tomato3", lty="dashed")

legend (2005 ,0.012 , legend=c("Lee -Carter","CBD","P-splines"),cex=0.9,lty=3,

col=c("gold","orange","tomato3"),bty = "n")

C.7 In sample R2

#Lee -Carter Qx.

Hat_LC=mxtHat_NL[1:50 ,]
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#CBD Qx.

Hat_CBD=CBDmxtHat_NL

#P-Spline mx and its transformation to Qx.

Hat_SP=exp(pre.for3$fit [ ,1:60])

Hat_SP=1-exp(-Hat_SP)

#R2 AGES 40 -89

#Average Qx ages 40 -89.

MEAN_qx= (Hat_LC+ Hat_SP+ Hat_CBD)/3 #Change depending on the combinations

to test: Hat_LC | Hat_CBD | Hat_SP

MEAN_Qx=c(MEAN_qx)

#Qx from the observed data.

Qx=(Dth/lx)

rownames(Qx)<-ages

colnames(Qx)<-years

Qx_young=Qx[1:50 ,]

Qx_young=c(Qx_young)

#We calculate the R^2 between the logarithms of the raw qx and the average qx.

#To do so we calculate the Squared sum of residuals.

RSS_young=sum((c(log(Qx_young))-c(log(MEAN_Qx )))^2)

#The squared sum of the differences between the estimations and the mean real value.

TSS_young=sum((c(log(Qx_young))-mean(c(log(Qx_young ))))^2)

# Calculation of the R^2

R2_young=1-RSS_young/TSS_young

##R2 AGES 89 -99

Hat_LC_old=mxtHat_NL[51:60 ,]

Hat_LC_old=c(Hat_LC_old)

Qx_old=Qx[51:60 ,]

Qx_old=c(Qx_old)

RSS_old=sum((c(log(Qx_old))-c(log(Hat_LC_old )))^2)

TSS_old=sum((c(log(Qx_old))-mean(c(log(Hat_LC_old ))))^2)
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R2_old=1-RSS_old/TSS_old

##R2 ALL AGES (40 -99)

#Average Qx for all ages.

MEAN_Qx_all=rbind(MEAN_qx,mxtHat_NL[51:60 ,])

MEAN_Qx_all=c(MEAN_Qx_all)

# Vectorized Qx from the observed data.

Qx_all=Qx[1:60 ,]

Qx_all=c(Qx_all)

RSS_all=sum((c(log(Qx_all))-c(log(MEAN_Qx_all )))^2)

TSS_all=sum((c(log(Qx_all))-mean(c(log(Qx_all ))))^2)

R2_all=1-RSS_all/TSS_all

C.8 Backtesting

#R2 P-SPLINE BACKTESTING .

#P-spline ommitting the last 10 years.

library(MortalitySmooth)

fitBIC4 <- Mort2Dsmooth(x=ages_2, y=years_2[1:50] , Z=death_2[ ,1:50] ,

offset=log(exposure_2[ ,1:50]) , ndx=c(6 ,13))

newyears2 <- 1957:2016

newdata2 <- list(x=ages_2, y=newyears2)

pre.for5 <- my.predict(fitBIC4 , newdata=newdata2 , se.fit=TRUE)

pre.for4=predict(fitBIC4 , newdata=newdata2 , se.fit=TRUE)

#P-Spline mx transformed to Qx.

PSqxtHat_NL2 <-exp(pre.for5$fit)

PSqxtHat_NL2=1-exp(-PSqxtHat_NL2)

# Confidence intervals

pre.for5_0.05_NL=exp(pre.for5$fit -2.57*pre.for5$se.fit)

pre.for5_0.05_NL=1-exp(-pre.for5_0.05_NL)

pre.for5_99.5_NL=exp(pre.for5$fit +2.57*pre.for5$se.fit)
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pre.for5_99.5_NL=1-exp(-pre.for5_99.5_NL)

#R2 backtesting .

Pred_Qx=c(PSqxtHat_NL2 [ ,51:60])

Obs_Qx=c(raw_mort_2[ ,51:60])

RSS_fore_PS=sum((c(log(Obs_Qx))-c(log(Pred_Qx )))^2)

TSS_fore_PS=sum((c(log(Obs_Qx))-mean(c(log(Obs_Qx ))))^2)

R2_fore_PS=1-RSS_fore_PS/TSS_fore_PS

#R2 LEE -CARTER BACKTESTING .

library(StMoMo)

NLData_3= EWMaleData

NLData_3$years=years [1:50]

NLData_3$ages=ages [1:60]

NLData_3$Dxt=Dth [1:60 ,1:50]

NLData_3$Ext=lx [1:60 ,1:50]

NLData_3$series="total"

NLData_3$label="Netherlands"

LCfit_NL_2 <- fit(link="log",lc(), data = NLData_3)

mxtHat_NL_2 <- fitted(LCfit_NL_2, type = "rates")

LCfor_NL_2= forecast(LCfit_NL_2,h=10)

mxtCentral_NL_2 <- LCfor_NL_2$rates

# Confidence intervals

LCboot_NL_2= bootstrap(LCfit_NL_2,nBoot =1000 , type="semiparametric")

LCsimPU_NL_2= simulate(LCboot_NL_2,h=10)

mxtPredPU0 .05_NL <- apply(LCsimPU_NL_2$rates , c(1, 2), quantile , probs = 0.005)

mxtPredPU99 .5_NL <- apply(LCsimPU_NL_2$rates , c(1, 2), quantile , probs = 0.995)

#R2 LC All.

MEAN_Qx_LC=c(mxtCentral_NL_2)

Qx_LC=c(raw_mort [1:60 ,51:60])

RSS_fore_LC_all=sum((c(log(Qx_LC))-c(log(MEAN_Qx_LC )))^2)

TSS_fore_LC_all=sum((c(log(Qx_LC))-mean(c(log(Qx_LC ))))^2)

R2_fore_LC_all=1-RSS_fore_LC_all/TSS_fore_LC_all

#R2 LC young.

MEAN_Qx_LC=c(mxtCentral_NL_2[1:50 ,])
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Qx_LC=c(raw_mort [1:50 ,51:60])

RSS_fore_LC_young=sum((c(log(Qx_LC))-c(log(MEAN_Qx_LC )))^2)

TSS_fore_LC_young=sum((c(log(Qx_LC))-mean(c(log(Qx_LC ))))^2)

R2_fore_LC_young=1-RSS_fore_LC_young/TSS_fore_LC_young

#R2 LC old.

MEAN_Qx_LC=c(mxtCentral_NL_2[51:60 ,])

Qx_LC=c(raw_mort [51:60 ,51:60])

RSS_LC_fore_old=sum((c(log(Qx_LC))-c(log(MEAN_Qx_LC )))^2)

TSS_LC_fore_old=sum((c(log(Qx_LC))-mean(c(log(Qx_LC ))))^2)

R2_LC_fore_old=1-RSS_LC_fore_old/TSS_LC_fore_old

#R2 CBD BACKTESTING .

NLData_4= NLData

NLData_4$years=years_2[1:50]

NLData_4$ages=ages_2

NLData_4$Dxt=Dth_2[ ,1:50]

NLData_4$Ext=lx_2 [ ,1:50]

NLData_4$series="total"

NLData_4$label="Netherlands"

CBDfit_NL_2 <- fit(link="log",cbd(), data =NLData_4)

CBDmxtHat_NL_2 <- fitted(CBDfit_NL_2, type = "rates")

CBDfor_NL_2= forecast(CBDfit_NL_2,h=10)

CBDmxtCentral_NL_2 <- CBDfor_NL_2$rates

# Confidence intervals

CBDboot_NL_2= bootstrap(CBDfit_NL_2,nBoot =1000, type="semiparametric")

CBDsimPU_NL_2= simulate(CBDboot_NL_2,h=10)

CBDmxtPredPU0 .05_NL <- apply(CBDsimPU_NL_2$rates , c(1, 2), quantile , probs = 0.005)

CBDmxtPredPU99 .5_NL <- apply(CBDsimPU_NL_2$rates , c(1, 2), quantile , probs = 0.995)

#R2 CBD young.

MEAN_Qx_CBD=c(CBDmxtCentral_NL_2)

Qx_CBD=c(raw_mort [1:50 ,51:60])

RSS_fore_CBD=sum((c(log(Qx_CBD))-c(log(MEAN_Qx_CBD )))^2)

TSS_fore_CBD=sum((c(log(Qx_CBD))-mean(c(log(Qx_CBD ))))^2)

R2_fore_CBD=1-RSS_fore_CBD/TSS_fore_CBD
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#R2 COMBINED BACKTESTING

Hat_LC=mxtCentral_NL_2[1:50 ,]

Hat_CBD=CBDmxtCentral_NL_2

Hat_SP=PSqxtHat_NL2 [ ,51:60]

#R2 ages 40 -89.

MEAN_qx= (Hat_CBD+Hat_SP+Hat_LC)/3 #Change depending on the combinations

to test: (Hat_LC+Hat_CBD+Hat_SP)/3 | (Hat_LC+Hat_CBD)/2 | (Hat_LC+Hat_SP)/2 |

(Hat_CBD+Hat_SP)/2 | Hat_LC | Hat_CBD | Hat_SP

MEAN_Qx=c(MEAN_qx)

Qx_young=c(raw_mort [1:50 ,51:60])

RSS_young=sum((c(log(Qx_young))-c(log(MEAN_Qx )))^2)

TSS_young=sum((c(log(Qx_young))-mean(c(log(Qx_young ))))^2)

R2_young=1-RSS_young/TSS_young

##R2 ages 40 -99

MEAN_Qx_all=rbind(MEAN_qx ,mxtCentral_NL_2[51:60 ,])

MEAN_Qx_all=c(MEAN_Qx_all)

Qx_all=raw_mort [1:60 ,51:60]

Qx_all=c(Qx_all)

RSS_all=sum((c(log(Qx_all))-c(log(MEAN_Qx_all )))^2)

TSS_all=sum((c(log(Qx_all))-mean(c(log(Qx_all ))))^2)

R2_all=1-RSS_all/TSS_all

#GRAPH TO COMPARE FORECASTS

library(yarrr)

par(mfrow=c(5,2))

for(i in 61:70) {

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2016) ,

ylim = c(min(pre.for5_0.05_NL[i-40 ,51:60]) , max(PSqxtHat_NL2[i-40,],

raw_mort_2[i-40,])), xlab="Year", ylab="Death probability",

main = paste ("Lee -Carter , CBD and P-splines fitted and projected yearly

fit and backtesting for age", i-1))

lines(years_2[1:50] , PSqxtHat_NL2[i-40 ,1:50] , col="gold")

#lines (2007:2016 , PSqxtHat_NL2[i -40 ,51:60] , col =" gold ")

lines (2007:2016 , pre.for5_0.05_NL[i-40 ,51:60] , col="gold",lty="dashed")

lines (2007:2016 , pre.for5_99.5_NL[i-40 ,51:60] , col="gold",lty="dashed")

polygon(c(2006 ,2007:2016 , rev (2007:2016)) ,c(PSqxtHat_NL2[i-40,50],
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pre.for5_0.05_NL[i-40 ,51:60] , rev(pre.for5_99.5_NL[i-40 ,51:60])) ,

col=transparent(orig.col = "gold", trans.val = 0.8), border = NA)

lines(years_2[1:50] , mxtHat_NL_2[i-40 ,1:50] , col="orange")

#lines (2007:2016 , mxtCentral_NL_2[i-40,], col =" orange ")

lines (2007:2016 , mxtPredPU0 .05_NL[i-40,], col="orange",lty="dashed")

lines (2007:2016 , mxtPredPU99 .5_NL[i-40,], col="orange",lty="dashed")

polygon(c(2006 ,2007:2016 , rev (2007:2016)) ,c(mxtHat_NL_2[i-40,50],

mxtPredPU0 .05_NL[i-40,],rev(mxtPredPU99 .5_NL[i-40,])),

col=transparent(orig.col = "orange", trans.val = 0.8), border = NA)

lines(years_2[1:50] , CBDmxtHat_NL_2[i-40 ,1:50] , col="tomato3")

#lines (2007:2016 , CBDmxtCentral_NL_2[i-40,], col =" tomato3 ")

lines (2007:2016 , CBDmxtPredPU0 .05_NL[i-40,], col="tomato3",lty="dashed")

lines (2007:2016 , CBDmxtPredPU99 .5_NL[i-40,], col="tomato3",lty="dashed")

polygon(c(2006 ,2007:2016 , rev (2007:2016)) ,c(CBDmxtHat_NL_2[i-40,50],

CBDmxtPredPU0 .05_NL[i-40,],rev(CBDmxtPredPU99 .5_NL[i-40,])),

col=transparent(orig.col = "tomato3", trans.val = 0.8), border = NA)

lines (2007:2016 ,( PSqxtHat_NL2[i -40 ,51:60]+

mxtCentral_NL_2[i-40,]+ CBDmxtCentral_NL_2[i-40,])/3, col="deeppink3")

lines (2007:2016 ,( PSqxtHat_NL2[i -40 ,51:60]+

CBDmxtCentral_NL_2[i-40,])/2, col="mediumorchid1")

lines (2007:2016 ,( PSqxtHat_NL2[i -40 ,51:60]+

mxtCentral_NL_2[i-40,])/2, col="lightpink")

lines (2007:2016 ,( mxtCentral_NL_2[i-40,]+

CBDmxtCentral_NL_2[i-40,])/2, col="darkmagenta")

legend (1995 ,0.013 , legend=c("P-splines","Lee -Carter","CBD",

"Lee -Carter+CBD+P-splines","CBD+P-splines", "Lee -Carter+P-splines",

"Lee -Carter+CBD"),cex=0.9,lty=3,col=c("gold","orange","tomato3","deeppink3",

"mediumorchid1","lightpink","darkmagenta"),bty = "n")

}

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#Fit for age 57 -59

par(mfrow=c(3,1))

for(i in 58:60) {

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2016) ,

ylim = c(min(PSqxtHat_NL2[i-40,]),max(PSqxtHat_NL2[i-40,],raw_mort_2[i-40,])),

xlab="Year", ylab="Death probability",

main = paste ("Lee -Carter , CBD and P-splines fitted and projected yearly

fit and backtesting for age", i-1))
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lines(years_2[1:50] , PSqxtHat_NL2[i-40 ,1:50] , col="gold")

#lines (2007:2016 , PSqxtHat_NL2[i -40 ,51:60] , col =" gold ")

lines (2007:2016 , pre.for5_0.05_NL[i-40 ,51:60] , col="gold",lty="dashed")

lines (2007:2016 , pre.for5_99.5_NL[i-40 ,51:60] , col="gold",lty="dashed")

polygon(c(2006 ,2007:2016 , rev (2007:2016)) ,c(PSqxtHat_NL2[i-40,50],

pre.for5_0.05_NL[i-40 ,51:60] , rev(pre.for5_99.5_NL[i-40 ,51:60])) ,

col=transparent(orig.col = "gold", trans.val = 0.8), border = NA)

lines(years_2[1:50] , mxtHat_NL_2[i-40 ,1:50] , col="orange")

#lines (2007:2016 , mxtCentral_NL_2[i-40,], col =" orange ")

lines (2007:2016 , mxtPredPU0 .05_NL[i-40,], col="orange",lty="dashed")

lines (2007:2016 , mxtPredPU99 .5_NL[i-40,], col="orange",lty="dashed")

polygon(c(2006 ,2007:2016 , rev (2007:2016)) ,c(mxtHat_NL_2[i-40,50],

mxtPredPU0 .05_NL[i-40,],rev(mxtPredPU99 .5_NL[i-40,])),

col=transparent(orig.col = "orange", trans.val = 0.8), border = NA)

lines(years_2[1:50] , CBDmxtHat_NL_2[i-40 ,1:50] , col="tomato3")

#lines (2007:2016 , CBDmxtCentral_NL_2[i-40,], col =" tomato3 ")

lines (2007:2016 , CBDmxtPredPU0 .05_NL[i-40,], col="tomato3",lty="dashed")

lines (2007:2016 , CBDmxtPredPU99 .5_NL[i-40,], col="tomato3",lty="dashed")

polygon(c(2006 ,2007:2016 , rev (2007:2016)) ,c(CBDmxtHat_NL_2[i-40,50],

CBDmxtPredPU0 .05_NL[i-40,],rev(CBDmxtPredPU99 .5_NL[i-40,])),

col=transparent(orig.col = "tomato3", trans.val = 0.8), border = NA)

legend (1997 ,0.022 , legend=c("Lee -Carter","CBD","P-splines"),

cex=0.9,lty=3,col=c("gold","orange","tomato3"),bty = "n")

}

C.9 Sample Information

#Import sample data

qx_todos <-as.data.frame(read.delim("Todos.txt", header=T))

qx_todos <-qx_todos[!is.na(qx_todos)]

qx_todos <-matrix(qx_todos ,109 ,10)

row.names(qx_todos)<-0:108

qx_todos <- qx_todos [41:95 ,]

colnames(qx_todos) <- c("2007", "2008", "2009", "2010", "2011", "2012",

"2013", "2014", "2015", "2016")

exp_mujeres <-as.data.frame(read.delim("ExpM.txt", header=T))

exp_mujeres <-exp_mujeres[!is.na(exp_mujeres )]

exp_mujeres <-matrix(exp_mujeres ,109 ,10)

row.names(exp_mujeres)<-0:108
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exp_mujeres <- exp_mujeres [41:95 ,]

exp_hombres <-as.data.frame(read.delim("ExpH.txt", header=T))

exp_hombres <-exp_hombres[!is.na(exp_hombres )]

exp_hombres <-matrix(exp_hombres ,109 ,10)

row.names(exp_hombres)<-0:108

exp_hombres <- exp_hombres [41:95 ,] #41:66

Exposures <- exp_mujeres + exp_hombres

colnames(Exposures)<-c("2007", "2008", "2009", "2010", "2011", "2012",

"2013", "2014", "2015", "2016")

Claims <- Exposures*qx_todos

C.10 Sample EDA

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#EDA 1

par(mfrow=c(1,1))

a<- colSums(Exposures)

b<- barplot(a, main="Portfolio size per year",xlab="Year",

ylab = "Frequency", col = "white", ylim=c(0, 1.1*max(a)))

text(x = b, y = a, label = c("246.780", "246.782", "246.793", "246.776",

"246.791", "246.783", "290.520", "347.890", "424.090", "494.670"),pos = 3,

cex = 0.7, col = "red")

mean (494670 -424090 ,424090 -347890 ,347890 -290520)

#EDA 2

par(mfrow=c(1,1))

a<- rowSums(Exposures)

b<- barplot(a, main="Portfolio composition by age",xlab="Year",

ylab = "Frequency", col = "white", ylim=c(0, 1.1*max(a)))

text(x = b, y = a, label = c("185.720","189.770","180.300","184.740","180.310",

"169.330","156.000","150.200","147.080","138.850","136.730","129.690","126.950",

"115.550","113.770","104.730","95.370", "83.330","79.040","68.040","56.610",

"49.830","39.090","30.480","23.540","18.310","15.890","12.950","10.120",

"7.780","6.720","5.460","4.790","2.900","2.170","2.050","3.000","1.090",

"1.430", "1.300","1.160","720","1.020","950","710","420","400","420","400",

"210","180","130","50","40","30"),pos = 3, cex = 0.5, col = "red")

#EDA 3

par(mfrow=c(1,1))
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a<- colSums(Claims)

b<- barplot(a, main="Deaths per year",xlab="Year",ylab = "Frequency",

col = "white", ylim=c(0, 1.1*max(round(a ,0))))

text(x = b, y = a, label = round(a,0),pos = 3, cex = 0.7, col = "red")

#EDA 4

par(mfrow=c(1,1))

a<- rowSums(Claims)

b<- barplot(a, main="Deaths by age",xlab="Year",ylab = "Frequency",

col = "white", ylim=c(0, 1.1*max(a)))

text(x = b, y = a, label = round(a,0),pos = 3, cex = 0.7, col = "red")

# Population Vs Company data ages 64 -66

par(mfrow=c(3,1))

for(i in 65:67) {

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2016) ,

ylim = c(min(qx_todos[i-41,]),max(raw_mort_2[i-40,])), xlab="Year",

ylab="Death probability", main = paste ("Population vs. company data for age",

i-1))

lines (2007:2016 , qx_todos[i-40,], col="red", type = "p")

}

C.11 Piggy-Back

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#Theory

par(mfrow=c(3,1))

i=66

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2026) ,

ylim = c(min(mxtCentral_NL[i-40,]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10])) ,

max(raw_mort_2[i-40,])), xlab="Year", ylab="Death probability",

main = "Piggy -Back step 1")

lines (2017:2026 , mxtCentral_NL[i-40,], col="orange",

type = "l", lty="dashed")

lines (2007:2016 , qx_todos[i-40,], col="red", type = "p")

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2026) ,

ylim = c(min(mxtCentral_NL[i-40,]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10])) ,

max(raw_mort_2[i-40,])), xlab="Year", ylab="Death probability",

main = "Piggy -Back step 2")

lines (2017:2026 , mxtCentral_NL[i-40,], col="orange", type = "l",

lty="dashed")

lines (2007:2016 , qx_todos[i-40,], col="red", type = "p")
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lines(c(2007 ,2007) ,c(raw_mort_2[i-40,51],qx_todos[i-40,1]),

lty="dashed", col="gray36")

text (2006 ,0.007 , expression(Delta [1]), cex=2, col="gray36")

lines(c(2012 ,2012) ,c(raw_mort_2[i-40 ,51+5] ,qx_todos[i-40,6]),

lty="dashed", col="gray36")

text (2011 ,0.007 , expression(Delta [5]), cex=2, col="gray36")

lines(c(2016 ,2016) ,c(raw_mort_2[i-40 ,51+9] ,qx_todos[i-40,10]),

lty="dashed", col="gray36")

text (2014.7 ,0.007 , expression(Delta [10]), cex=2, col="gray36")

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2026) ,

ylim = c(min(mxtCentral_NL[i-40,]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10])) ,

max(raw_mort_2[i-40,])), xlab="Year", ylab="Death probability",

main = "Piggy -Back step 3")

lines (2017:2026 , mxtCentral_NL[i-40,], col="orange", type = "l",

lty="dashed")

lines (2007:2016 , qx_todos[i-40,], col="red", type = "p")

lines (2017:2026 , mxtCentral_NL[i-40,]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10]) ,

col="orange", type = "l", lty="dashed")

lines(c(2017 ,2017) ,c(mxtCentral_NL[i-40,1],

mxtCentral_NL[i-40,1]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10])) ,

lty="dashed", col="gray36")

text (2015.5 ,0.006 , expression(delta["m,1"]), cex=2, col="gray36")

lines(c(2021 ,2021) ,c(mxtCentral_NL[i-40,5],

mxtCentral_NL[i-40,5]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10])) ,

lty="dashed", col="gray36")

text (2019.4 ,0.006 , expression(delta["m,5"]), cex=2, col="gray36")

lines(c(2026 ,2026) ,c(mxtCentral_NL[i-40,10],

mxtCentral_NL[i-40,10]-(raw_mort_2[i-40 ,51+9] -qx_todos[i-40 ,10])) ,

lty="dashed", col="gray36")

text (2024.1 ,0.006 , expression(delta["m,10"]), cex=2, col="gray36")

# Assumptions

par(mfrow=c(3,1))

plot (40:89 , log(raw_mort_2[,51]), xlab="Age", ylab="log(mortality)",

main = "Log(mortaity) per age - Population", type="o", col="gold")

lines (40:89 , log(raw_mort_2[,52]), xlab="Age", ylab="log(mortality)",

type="o", col= "gold3")

lines (40:89 , log(raw_mort_2[,53]), xlab="Age", ylab="log(mortality)",

type="o", col= "orange")

lines (40:89 , log(raw_mort_2[,54]), xlab="Age", ylab="log(mortality)",

type="o", col= "orange2")

lines (40:89 , log(raw_mort_2[,55]), xlab="Age", ylab="log(mortality)",

type="o", col= "darkorange")

lines (40:89 , log(raw_mort_2[,56]), xlab="Age", ylab="log(mortality)",

type="o", col= "darkorange3")

lines (40:89 , log(raw_mort_2[,57]), xlab="Age", ylab="log(mortality)",



Appendix C 101

type="o", col= "tomato")

lines (40:89 , log(raw_mort_2[,58]), xlab="Age", ylab="log(mortality)",

type="o", col= "tomato3")

lines (40:89 , log(raw_mort_2[,59]), xlab="Age", ylab="log(mortality)",

type="o", col= "red")

lines (40:89 , log(raw_mort_2[,60]), xlab="Age", ylab="log(mortality)",

type="o", col= "red3")

plot (40:94 , log(qx_todos [,1]),xlab="Age", ylab="log(mortality)",

main = "Log(mortaity) per age - Sample", type="o", col="gold")

lines (40:94 , log(qx_todos[,2]),xlab="Age", ylab="log(mortality)",

type="o", col= "gold3")

lines (40:94 , log(qx_todos[,3]),xlab="Age", ylab="log(mortality)",

type="o", col= "orange")

lines (40:94 , log(qx_todos[,4]),xlab="Age", ylab="log(mortality)",

type="o", col= "orange2")

lines (40:94 , log(qx_todos[,5]),xlab="Age", ylab="log(mortality)",

type="o", col= "darkorange")

lines (40:94 , log(qx_todos[,6]),xlab="Age", ylab="log(mortality)",

type="o", col= "darkorange3")

lines (40:94 , log(qx_todos[,7]),xlab="Age", ylab="log(mortality)",

type="o", col= "tomato")

lines (40:94 , log(qx_todos[,8]),xlab="Age", ylab="log(mortality)",

type="o", col= "tomato3")

lines (40:94 , log(qx_todos[,9]),xlab="Age", ylab="log(mortality)",

type="o", col= "red")

lines (40:94 , log(qx_todos [,10]),xlab="Age", ylab="log(mortality)",

type="o", col= "red3")

transp <-t(log(qx_todos))

plot (2007:2016 , transp[,1],xlab="Year", ylab="log(mortality)",

main = "Log(mortaity) per year - Sample", type="o", col="gold",

ylim=c(min(transp ),-6.4))

for (i in 2:5) {lines (2007:2016 , transp[,i],xlab="Age", ylab="log(mortality)",

type="o", col= "gold")}

for (i in 6:10) {lines (2007:2016 , transp[,i],xlab="Age", ylab="log(mortality)",

type="o", col= "gold3")}

for (i in 11:15) {lines (2007:2016 , transp[,i],xlab="Age", ylab="log(mortality)",

type="o", col= "orange")}

for (i in 16:20) {lines (2007:2016 , transp[,i],xlab="Age", ylab="log(mortality)",

type="o", col= "orange2")}

for (i in 21:25) {lines (2007:2016 , transp[,5],xlab="Age", ylab="log(mortality)",

type="o", col= "darkorange")}

for (i in 26:30) {lines (2007:2016 , transp[,6],xlab="Age", ylab="log(mortality)",

type="o", col= "darkorange3")}

for (i in 31:35) {lines (2007:2016 , transp[,7],xlab="Age", ylab="log(mortality)",

type="o", col= "tomato")}

for (i in 36:40) {lines (2007:2016 , transp[,8],xlab="Age", ylab="log(mortality)",
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type="o", col= "tomato3")}

for (i in 41:45) {lines (2007:2016 , transp[,9],xlab="Age", ylab="log(mortality)",

type="o", col= "red")}

for (i in 46:50) {lines (2007:2016 , transp [,10],xlab="Age", ylab="log(mortality)",

type="o", col= "red3")}

for (i in 51:55) {lines (2007:2016 , transp [,10],xlab="Age", ylab="log(mortality)",

type="o", col= "red4")}

#PIGGY BACK MODEL

X <- cbind (40:89 ,40:89 ,40:89 ,40:89 ,40:89 ,40:89 ,40:89 ,40:89 ,40:89 ,40:89)

library(StMoMo)

mxtHat_NL_link <- fitted(LCfit_NL , type = "link") #We verify that

mxtHat_NL_link=log(mxtHat_NL), therefore mxtHat_NL_link=hat(alpha )+[ hat(beta)*kappa]

Estimate.Sheet <- mxtHat_NL_link [1:50 ,51:60]

GLM_1 <- glm(c(Claims [1:50 ,]) ~ c(X) + offset(log(c(Exposures [1:50 ,])))

+ offset(c(Estimate.Sheet)), family = poisson)

summary(GLM_1)

pred <- predict(GLM_1,type="response")

pred_2 <- (pred/c(Exposures [1:50 ,]))

m<-matrix(pred_2,50,10)

rownames(m)<- c(40:89)

colnames(m) <- c(2007:2016)

J <-cbind(LCfor_NL$rates [1:26 ,1]+( GLM_1$coefficients [2]*(40:65))/Exposures [,1],

LCfor_NL$rates [1:26 ,2]+( GLM_1$coefficients [2]*(40:65))/Exposures [,2],

LCfor_NL$rates [1:26 ,3]+( GLM_1$coefficients [2]*(40:65))/Exposures [,3],

LCfor_NL$rates [1:26 ,4]+( GLM_1$coefficients [2]*(40:65))/Exposures [,4],

LCfor_NL$rates [1:26 ,5]+( GLM_1$coefficients [2]*(40:65))/Exposures [,5],

LCfor_NL$rates [1:26 ,6]+( GLM_1$coefficients [2]*(40:65))/Exposures [,6],

LCfor_NL$rates [1:26 ,7]+( GLM_1$coefficients [2]*(40:65))/Exposures [,7],

LCfor_NL$rates [1:26 ,8]+( GLM_1$coefficients [2]*(40:65))/Exposures [,8],

LCfor_NL$rates [1:26 ,9]+( GLM_1$coefficients [2]*(40:65))/Exposures [,9],

LCfor_NL$rates [1:26 ,10]+( GLM_1$coefficients [2]*(40:65))/Exposures [,10])

#GRAPHS (SNIPS) TO INCLUDE IN THE DOCUMENT.

#Final Forecast

par(mar = c(4, 4.5, 4, 2))
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par(mfrow=c(3,1))

for(i in 64:66) {

A<-(m[i-40 ,])

B <- J[i-40,]-( LCfor_NL$rates[i-40,1]-A[10])

W<-LCfor_NL$rates[i-40,]-( LCfor_NL$rates[i-40,1]-A[10])

plot(years_2,raw_mort_2[i-40,], xlim = c(1957 ,2026) ,

ylim = c(min(qx_todos[i-40,],A,B),max(raw_mort_2[i-40,],A,B)),

xlab="Year", ylab="Death probability",

main = paste ("Population vs. company data for age", i))

lines (2007:2016 , qx_todos[i-40,], col="red", type = "p")

lines (2007:2016 , A, col="blue", type = "p")

lines (2017:2026 , LCfor_NL$rates[i-40,], col="orange", lty="dashed")

lines (2017:2026 , B, col="red", lty="dashed")

}
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