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Abstract

In this paper we discuss the concept of the cost‐of‐
capital (CoC) rate for an insurance company as an

equilibrium in the economic triangle of policyholders,

shareholders, and the regulator. This provides a

possible rationalization and an economic foundation

for a quantity that is widely used in practice but whose

value is typically neither technically nor economically

well justified. We show how it can be well founded in

such a triangular equilibrium. Under a simple one‐
period model and a valuation procedure of a two‐price
economy for illiquid assets we provide a corresponding

economic‐theoretical quantification for the CoC rate.

The resulting rates are illustrated by a number of

concrete numerical examples.
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1 | INTRODUCTION AND MOTIVATION

Insurance claims constitute a downside risk for shareholders of an insurance company because
they need to finance possible shortfalls in insurance claims payments. The regulator decides up
to which threshold the shareholders have to come up for shortfall payments through the
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regulatory capital requirement, and, in this sense, the shareholders' liabilities have the features
of a limited‐liability option. Since the shareholders' capital is at risk, they expect a certain
return for providing this regulatory risk‐bearing capital for potential shortfall payments. Our
aim is to rationalize an appropriate expected rate of return on the risk‐bearing capital provided
by the shareholders. The expected rate of return is split into two parts: (i) the risk‐free return,
and (ii) the spread above the risk‐free return for compensating the bearing of insurance risk.
The present paper focuses on this spread, which is called the cost‐of‐capital (CoC) spread. We
investigate its relation to the risk margin paid by the policyholders, for a given degree of
diversification of the insured risks. This relation is known as the CoC approach to risk margin
calculations.

The CoC approach to calculating the risk margin came from the Swiss Solvency Test into
Solvency 2 by the general acceptance of chief financial and risk officers and other practitioners
in the European insurance market. Although the idea of a CoC margin is a classical economic
pattern of thinking and was stated by law, it was not shaped towards modern valuation
methods in mathematical finance, including incomplete market valuation. The CoC approach
is just one approach to the valuation of nonhedgeable risk. This approach is considered as an
alternative to other approaches conforming, by the formalization of preferences of market
participants, with incomplete market valuation methods. To the knowledge of the authors only
a few papers have been written on an integrate connection between the CoC approach and
established valuation methods. The purpose of the present paper is to add to this literature, we
provide the crucial clarification about the risk measure, the risk margin, the limited‐liability
option, and the CoC rate, and we give further insight.

When relating our viewpoint with the ideas that have been proposed by others, a couple of
decisive aspects must be clarified. One aspect is the financial market. One can choose a general
market framework and add investment decision making as an integral part of the problem (see,
e.g., Barigou et al., 2019, 2021; Deelstra et al., 2020; Dhaene et al., 2017, for discrete time;
Delong et al., 2019a, 2019b; Pelsser & Stadje, 2014, for continuous‐time extensions; Albrecher
et al., 2018, for an overview). This generality comes at the cost of a rather technical presentation
with heavy notation, and investment strategies as a side ingredient or result, secondary to the
fundamental perception of the CoC idea, and not leading to an intuitive understanding of
suitable sizes of margins.

A second aspect is the question of (partial) hedging of insurance risks. The regulator looks
at both financial and insurance risks. On the basis of the company's proposed financial strategy
and the insurance risks, he fixes an aggregate capital requirement. Even when certain strategies
increase, for example, the return (stocks instead of obligations), they may lead to a higher
regulator's requirement. Thus, market hedging has to be considered in the context of the
regulator's risk assessment (denoted ρ below). The hedging strategy with a minimal value of ρ
is called the optimal replicating portfolio. A different hedging strategy with a higher
requirement may also lead to additional financial risks which have to be included in the
acceptance condition given later in (13). Therefore, we disregard hedgeable claims and
concentrate, in the first place, on establishing a theoretical substantiation of a CoC pricing of
nonhedgeable claims. As such, nonhedgeable claims are assumed to be independent from
financial market risk drivers, and therefore in all what follows we assume that claims are
(simply) discounted or, in other words, represented by a zero‐coupon bond numeraire.

Another aspect is the time horizon. One can work in a multiperiod framework such that all
claims, values and decisions become (stochastic) processes and a recursive solution structure
emerges (like in many of the above‐mentioned references). Also, one has to be careful that the
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limited‐liability option is actually of American type. Such generality comes at the cost of
technicality and notation concerning existence and measurability of values and strategies.
Instead, we work in a one‐period model such that the business is all about realizing a risk after
one period, contracting its distribution, and evaluating it before the period based on appropriate
notions of valuation.

A different crucial assumption is the very definition of the risk margin. The convention is to
decompose the value of the insurance claim into a best‐estimate part and a risk margin. This
decomposition depends on whether the best‐estimate is a best‐estimate of the claim excluding or
including the limited‐liability option of the shareholders. We take the best‐estimate to be defined as
excluding the limited‐liability option. This conforms with the perception of the best‐estimate in
solvency rules but it does not necessarily conform with the perception of the best‐estimate
in market accounting rules (because the limited‐liability option typically has a value different from
zero). This distinction is absolutely crucial. In accounting, the true market value of the true (net)
claim appears in the balance sheet. In solvency, the ultimate result is not the balance sheet but the
capital requirement, and solvency balance sheet entries can take into account artificial valuation of
artificial (or gross) claims. The standard solvency approach is to work with true market values of
the no‐limited‐liability‐claim which is artificial exactly because it disregards the limited‐liability
option. The brief logic behind the no‐limited‐liability‐claim is that defining bankruptcy as a
situation where the assets are smaller than the liabilities and the liabilities are based on the limited‐
liability option, then no firm ever goes bankrupt since the value of the insureds' part of the assets is
never larger than the assets in total. Skipping the limited‐liability option in the liability valuation
makes both insolvency and the liability well defined.

Finally, the approach to valuation in incomplete markets is crucial. One idea is to let the
capital provider assume a utility function based on which valuation and financial decision
making takes place (see, e.g., Delbaen, 2012; Malamud et al., 2008). Alternatively, we assume
here the existence of a set of valuation measures under which valuation is performed by taking
expectations. In a bid–ask spread approach to valuation, a convex set of probability measures
occurs. A stricter idea would be to simply assume a single valuation measure.

The presentation of these aspects and assumptions allows for a brief systematic review of
the sparse literature on the subject matter of the actual choice of the CoC rate. Engsner et al.
(2017) work with a general financial market in a multiperiod framework in contrast to us. The
valuation by the capital provider is based on a utility whereas our valuation is motivated by a
bid–ask spread approach to incomplete market valuation. Also, their ultimate objective is not to
establish a connection between the solvency requirement, the CoC, and the risk margin as ours
is, although they do calculate a risk margin based on the CoC approach to risk margin
calculation. Möhr (2011) works in a framework similar to Engsner et al. (2017) with the main
difference being that the investment strategy which is an integral part of the multiperiod
problem in a given financial market, is not allowed to be dynamic. Engsner et al. (2020) look for
an integrate connection between the solvency capital requirement (SCR) and the CoC in a way
similar to ours. They work with a general financial market in a multiperiod framework in
contrast to us. Their incomplete market valuation is based on a given valuation measure not
inferred from the market. Moreover, and most crucially, their risk margin is defined on top of a
best‐estimate including the limited‐liability option. Similarly, but being even more general by
modeling not only multiperiod but also multirisk problems, Bauer and Zanjani (2021) work in
the same direction as we do. On the other hand, their examples of incomplete market valuation
methods are, fundamentally different from our change‐of‐measure approach, based on more
classical actuarial premium principles. Even further away from our approach but still pursuing,
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directly or indirectly, refinements in the quantification of the CoC, recent contributions include
Niehaus (2022) who examines the impact from taxation on the CoC, Chiang et al. (2022) who
study the impact from opaqueness of liabilities on the CoC, and Huggenberger and Albrecht
(2022) who investigate the impact of risk pooling on the capital requirements and, thereby,
indirectly on the CoC.

The rest of this paper is organized as follows. Section 2 describes the general setup and
regulatory concepts relevant for the subsequent analysis. Section 3 develops the main ideas of
the present contribution and embeds them into the context of the field. In Section 4 we work
out concrete examples for Gaussian, log‐normal, and Pareto risks for both the Value‐at‐Risk
(VaR) and the Expected Shortfall as regulatory risk measures. Under specific numerical
specifications of the underlying ingredients this leads to explicit CoC rates resulting from our
equilibrium approach, and it allows for quantitative insights into the sensitivities of these rates
with respect to the chosen specifications. Section 5 concludes.

2 | STAKEHOLDERS AND THE CoC VIEW

Let (Ω, , ) be a probability space and introduce an (aggregate) insurance claim Y on this
probability space. We think of a one‐period model where the claim Y is paid to the
policyholders at the end of the period, and the management of the insurance company has to
make their business decisions at the beginning of that period, say, at time 0 with respect to
managing capital. That is, the management decides on how to distribute the costs of the
insurance activity to policyholders and shareholders before that insurance period starts in
which claim Y manifests. If there is access to a financial market, there is a second layer of
business decisions to be made with respect to managing the assets. This dimension is beyond
the scope of this presentation where we focus on the pure capital management problem.

Since we disconnect our consideration from any financial market risk drivers, we may and
will assume that Y describes a discounted quantity throughout this paper. We assume that the
regulatory framework prescribes a risk (assessment) measure ρ as the regulatory capital
requirement. That is, the regulatory capital requirement C of insurance activity Y is defined by

Y C ρ Y= ( ).↦ (1)

Example 2.1. If the VaR at security level p (0, 1)∈ is used as risk measure, we have

C Y γ Y γ p F p= VaR ( ) = inf{ : [ ] } = ( ),p
−1∈ ≤ ≥ (2)

where F is the distribution function of Y and F−1 its left‐continuous generalized inverse.
If the Expected Shortfall/Tail‐Value‐at‐Risk (TVaR) at security level p (0, 1)∈ is used

as risk measure, we have

C Y
p

Y dα= TVaR ( ) =
1

1 −
VaR ( ) .p

p
α

1 (3)

Note that if the distribution function F of Y is continuous, the TVaR is equal to the
conditional tail expectation (CTE) given by Y Y Y YCTE ( ) = [ > VaR ( )]p p on the same
security level p (0, 1)∈ .

1142 | ALBRECHER ET AL.
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We assume that the insurance company needs to fulfill the solvency requirement (1) at the
beginning of the period, otherwise it is not allowed to run its insurance business, that is, it is
declared to be insolvent if it does not hold at least capital C.

We disentangle the capital requirement given in (1) to see the contributions provided by the
insured policyholders (through the insurance premium) and by the shareholders (through
investments followed by dividend payments). Let μ Y= [ ] be the discounted mean, also called
best‐estimate or pure risk premium. Of course, from a practical point of view, the regulatory capital
C must be greater than this mean. This is actually a critical point, since for VaR (for any security
level p < 1) one can find bounded random variables which do not satisfy this condition. This is one
of the reasons why VaR may have a rather poor behavior as a risk measure. From a mathematical
point of view, the condition C μ> is a condition on the relation between the risk measure ρ, the
security level p (in case of VaR or TVaR), and the distribution of Y .

In general, the (total/aggregate) premium P (without administrative costs and taxes) paid by
the policyholders exceeds the mean of the claim: P μ≥ . In this case, the mean gain above the
pure risk premium μ defines the risk margin RM,

P μRM − 0.≔ ≥ (4)

It forms the safety loading in the premium P above the pure risk premium μ (best‐estimate). This
expected gain is paid to the shareholders for risk bearing. However, this argument needs a deeper
analysis because (4) only gives an expected value view, and more explanation follows in the sequel.

Modern solvency and accounting rules allow for a profit margin PM paid on top of the
expected claim and the risk margin such that the premium actually exceeds μ + RM. If we still
denote this modified premium by P, the profit margin PM is given by

P μPM − − RM 0.≔ ≥ (5)

This profit margin is here, for the moment, taken to be zero, conforming with definition (4),
and making the risk margin RM well defined. A vanishing profit margin should also be the
result of a fully competitive insurance market with similar competitors.

The positive risk margin RM is in general not sufficient to meet the regulatory requirement C,
that is, P C< . Therefore, the shareholders—driven by the expectation to gain the risk margin
RM—must provide an additional capital buffer. More precisely, they must supply/invest at least the
difference between the regulatory capital requirement C and the premium P. The minimum
investment from the shareholder is called the solvency capital requirement SCR and is defined by

C PSCR − 0.≔ ≥ (6)

In the Swiss Solvency Test, the risk margin is called the market value margin, the quantity

q C μ− > 0≔ (7)

is called the target capital, and the amount C is called the supervisory provision.
Let us briefly comment on the two cases where the inequalities in (4) and (6) do not hold. It can

actually be the case that P μ< under an economic equilibrium and we also discuss this case briefly
below. If this is the case, the shareholders make heavy use of their limited‐liability option and ruin
is not an unlikely event. Also, if the security level reflected by ρ is low and/or the risk margin RM

ALBRECHER ET AL. | 1143
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provided by the policyholders is large, it may happen that C P< . In that case the shareholders do
not need to supply any capital SCR because it is already provided by the policyholders through the
(higher) marginRM. One may interpret that this is the situation of captives and mutuals, where the
members are simultaneously policyholders and shareholders; the recently increasingly popular P2P
insurance networks might also be seen in that category, see, for example, Denuit (2019, 2020). The
possibly higher premium at the beginning can then be offset by a later profit at the end of the
period due to the (expected) distributions of possible gains. However, with a proper distinction
between the needed RM and SCR, such simultaneous roles should eventually not influence the
analysis. We will assume SCR 0≥ in the sequel.

Most of the time, the shareholders' part on the liability side of the solvency balance sheet is
much higher than SCR, which is only the minimal amount for regulatory acceptance
(solvency). The percentage of the shareholders' part with respect to the SCR is called the
solvency ratio. However, for the analysis of the economic triangle between shareholders,
policyholders, and the regulator, it is meaningful to consider a company providing exactly the
minimal amount of capital, that is, the equity equals C PSCR = − .

Note there is an economic balance between the risk margin RM provided by the
policyholders as “Fremd”‐capital and the SCR provided by the shareholders as equity (“Eigen”‐
capital, or “own funds”).1 We assume that this balance is in a market equilibrium which we
want to analyze further.

As mentioned before, for providing the SCR, shareholders expect in the mean the risk
margin RM as gain. The CoC rate RCoC is defined as the ratio between the risk margin RM, the
expected gain, and the SCR, the shareholders' equity:

R
RM

SCR
.CoC ≔ (8)

Read as RM = R SCRCoC⋅ , the RCoC can also be defined as the amount of “Fremd”‐capital
needed to fund 1 unit of investment capital (SCR = 1). If we had worked with investment
opportunities, the expected gain RM would have come on top of the return from investments in
the market. Thus, RCoC would have been interpreted as the rate obtained from investment in
the insurance risk, exclusively.

As defined in (8), RCoC is a nice pattern of thinking, yielding also intuitive economic
interpretations, but it is not based on a more profound economic analysis. There is no help
from definition (8) itself in determining the size of any of its ingredients. The objective of
Section 3 is to establish an equilibrium condition that determines the size of the ingredients in
(8) and to derive the size of RCoC from that equilibrium condition based on (8).

3 | EQUILIBRIUM PRICE AND EQUILIBRIUM CoC RATE

We are now going to consider how the capital is distributed at the end of the period. We make
three fundamental assumptions: (1) the policyholders receive no more than Y , that is, they do
not participate in any way in profits, (2) the policyholders have priority in compensation, that
is, the available capital is first used to compensate the policyholders, and (3) the shareholders

1For a detailed discussion of the terms “Fremd”‐capital versus “Eigen”‐capital, see Eisele and Artzner (2011).
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do not receive less than 0, that is, the limited‐liability option applies. The profit‐and‐loss result
of the insurance company is given by P Y C Y+ SCR − = − (we neglect state taxes and other
administrative expenses). Under the given conditions, the capital distribution to shareholders—
either as capital value to support future business activities or as a dividend payment—is

C Y( − ) .+ (9)

The compensation to the policyholders is the minimum of C and Y , that is, the censored
claim

Y C. (10)

The two options of course sum up to C, the available capital to be distributed, with the
repartition depending on the outcome of Y .

Option (9) is called the insurance (limited‐liability) option, sometimes it is also called exit
option or insolvency option. It has the same structure as a classical financial put option. The
difference is, however, that the underlying Y is not traded in a liquid financial market. We
therefore refer to the theory of bid and ask prices in incomplete markets as presented, for
example, in Madan and Cherny (2010), Madan and Schoutens (2010) and Eberlein et al. (2014).
According to this approach, the bid price of the insurance option (9) at the beginning of the
period is given by an operator Ψ and can be written as

C Y C YΨ(( − ) ) = inf [( − ) ] 0,+ +


≥

∈ (11)

where is a nonempty convex set of probability measures that are absolutely continuous w.r.t.
the real‐world measure . According to Artzner et al. (1999), Ψ is a coherent risk assessment
(i.e., the negative of a coherent risk measure) satisfying the Fatou‐property (see also Föllmer &
Schied, 2010).

Only if the bid price of the insurance option offered by the company is large enough to cover
the solvency requirement from the regulator, the risk trading actually takes place. Otherwise
the company is not willing to offer the regulatory capital needed for the business to be approved
by the regulator, with the consequence that the insurance portfolio cannot be offered to the
policyholders. Thus, we have the inequality

C YSCR inf [( − ) ].+


≤

∈ (12)

By (6) it follows that

P C C C Y Y C= − SCR − inf [( − ) ] = sup [ ],+

 

≥
∈ ∈


(13)

where we have used that C is deterministic, and we use the decomposition

C Y C C Y= + ( − ) .+

ALBRECHER ET AL. | 1145
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In a competitive insurance market, the premium P attains the lower bound (13), since this
is sufficient for the necessary counterpart SCR to be found at the financial market. Therefore,
we can state the main economic equilibrium equations for the premium, the risk margin, the
SCR, and the CoC rate:

Theorem 3.1. Inequality (13) yields the economic premium principle

P Y C= sup [ ].
∈


(14)

Consequently, we get for RM and SCR the equilibrium equations

Y C YRM = sup [ ] − [ ],
∈


(15)

C YSCR = inf [( − ) ].+

∈ (16)

Finally, the CoC rate is given by the equality

C Y

C Y
R =

− [ ]

inf [( − ) ]
− 1.CoC +

M∈

(17)

Proof. Relation (14) follows by replacing the inequality in (13) by an equality in
equilibrium. Relation (15) follows from the definition of the risk margin in relation to
premiums (4) and (14). Relation (16) follows by replacing the inequality in (12) by an
equality in equilibrium. Relation (17) follows from the definition of the CoC rate (8), (15),
(16), and equality in (13), that is,

Y C Y

C Y

C C Y Y

C Y

C Y

C Y

R =
RM

SCR

=
sup [ ] − [ ]

inf [( − ) ]

=

− inf [( − ) ] − [ ]

inf [( − ) ]

=
− [ ]

inf [( − ) ]
− 1.

CoC

+

+

+

+

M

M

M

M

M

∈

∈

∈

∈

∈



This proves the results. □

A series of discussions are appropriate at this point.

• Engsner et al. (2017) have established similar objects in a multiperiod framework. In their
particular case of a one‐period model, they obtain the formulas (14) and (16) in our special
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case where the set  is a singleton. Engsner et al. (2021) then extend the results from
Engsner et al. (2017) to the case of a more general set such that results in the one‐period
special case of Engsner et al. (2021) essentially coincide with (14) and (16). A delicate issue
studied in Engsner et al. (2021) is to structure the set such that the multiperiod problem is
well‐posed. A key difference to these works, though, is that we define the risk margin as the
value in excess of the expected no‐limited‐liability‐claim, see also the next bullet item.

• In the general setting of Theorem 3.1, it may well happen that the risk margin RM and, thus,
also the CoC rate is negative. This reflects a situation where the risk aversion of the regulator,
specified through the chosen risk measure ρ and forming the value ofC, is in a sense smaller
(leading to a small C) than the risk aversion of the equity providers, specified through
and, for a given C, forming the values of RM and SCR. This is a consequence of defining the
risk margin as the safety loading on top of the expected no‐limited‐liability‐claim μ Y= [ ],
see Section 1, that is, excluding own credit risk. Basically, this means that the policyholders
pay for claim compensations Y , although they will only receive Y C . An alternative (more
fair) definition of the risk margin would be the safety loading on top of the expected claim
including own credit risk. With the capital allocation specified in (10) we redefine
μ Y C= [ ] instead of Y[ ]. This redefinition of μ (limited‐liability pure risk premium)
changes the risk margin in (15) into

Y C Y CRM = sup [ ] − [ ],
M∈

 

and, consequently,

Y C Y C

C Y

C C Y Y C

C Y

C Y

C Y

R* =
sup [ ] − [ ]

inf [( − ) ]

=

− inf [( − ) ] − [ ]

inf [( − ) ]

=
[( − ) ]

inf [( − ) ]
− 1.

CoC +

+

+

+

+

M

M

M

M

M

∈

∈

∈

∈

∈

 


(18)

Engsner et al. (2020) define the risk margin as the price in excess of the expected limited‐
liability‐claim. So, in their particular case of a one‐period model they obtain a CoC rate
similar to R*CoC defined above when is a singleton. In a market of risk‐averse investors the
set ends up such that

Y C Y Csup [ ] > [ ],
∈

 

leading to a strictly positive RM and a strictly positive R* > 0CoC . If risk‐neutrality of investors
is included such that P ∈ , we can only conclude a nonnegative RM and a nonnegative
R*CoC. The distinction between the results in the theorem and the alternative specification in
this paragraph may be considered as a matter of convention. It is important, however, to
note that the size of the risk margin and the size of the CoC rate, for a given set ρ( , )

ALBRECHER ET AL. | 1147

 15396975, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12406 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



depend on the convention under which we work, and it is relevant for a transparent
communication with the policyholders. There is a tendency to speak about the best‐estimate
μ as excluding own credit risk when working in solvency (accounting for the regulators)
whereas the best‐estimate includes own credit risk when working in accounting (accounting
for the financial market). The results of the theorem and the results in this paragraph expose
the crucial importance of this distinction, and also the fairness in communication towards
policyholders what they will be compensated for.

• We stress that the only external specifications in Equations (14)–(17) are the choices of the risk
measure ρ of the regulatory capital requirement, and the set which determines the bid price in
an incomplete market. In the calculations above we think of ρ and  as being settled
independently of each other. The regulators have an aversion towards risk, or rather aversion
towards insolvency, that is reflected in the choice of ρ. Separately from that, the market
participants, the investors, and the policyholders, in equilibrium “agree” on a set used for the
settlement of the price. Then ρ and are plugged into (17) to reach an equilibrium price P, to
which the policyholders eventually need to agree. If this is the case, all stakeholders do agree on
this risk exchange, which is admitted by the regulator since the capitalization needs to fulfill the
solvency requirements. This is the situation that we call the economic triangle between
policyholders, shareholders, and the regulator. Note that, for a fixed P, is increasing inC. The
interpretation is that with a given risk aversion among the investors, the regulators can increase
the protection of the policyholders by increasing C, but this comes at the cost of a higher
insurance premium. Investors with large claims win from such an increased protection whereas
investors with small claims lose. Before the claim realization, obviously, we do not know who
wins and who loses. However, the triangular pattern of thinking may be questioned by different
arguments. A different idea is that the regulator is essentially just an ambassador for the
policyholders and, thus, these two stakeholders should not be separated but be seen as one. Then
the risk aversion of the policyholders is expressed simultaneously through both ρ and, and
these two quantities cannot be settled one at a time. However, even in that case the calculations
above are valid. We have then an economic agreement between only two stakeholders, the
policyholders and the investors, which is, again, reflected in (17). It is a strong feature of our
approach that it covers both the triangular and the two‐participants interpretation. In the
numerical examples, below, we do not pay any attention to the possible simultaneous settlement
of ρ and. We simply take one as given and vary over the other, or vice versa, corresponding to
marginal changes of the interests of the regulators and the investors, respectively. On a political
level, the distinction between the triangular an two‐participant interpretation relates to whether
the regulation (formulated by some political organizational level, be that a nation or a unity of
nations) is thought of by the policyholders as external to themselves or as part of themselves.

• Equalities in the theorem arose from a series of equilibrium and competition arguments. First
the profit margin in (5) was set to zero meaning that only the risk margin is charged on top of
the expected claim. Practically, one may charge an even higher premium if the market
conditions allow for. Second, we replace the inequality in (13) by an equality to form (14), also
by arguments about the competition and equilibrium. Actually, these two competition
arguments are equivalent. Finally, we let the investment of the investor be just sufficient to run
the business, that is, no overcapitalization is assumed as discussed above. This meant that
exactly the amountC Y− , and not more than that, is to be distributed at the end of the period.
Of course, one may play around with the formula to obtain versions outside this equilibrium,
for example, where the policyholders and/or the shareholders inject more capital into the
system than they really have to. The convention is to work with a reference entity business
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(basic principles of the solvency setup) and then define the risk margin and the CoC rate for
this reference entity business which uses the optimal replicating portfolio (see above) and as
such is independent of entity‐specific pricing and capitalization outside the equilibrium. Thus,
we conclude that the idea of a reference entity business conforms with the equilibrium‐
competition arguments advocated in this paper. Entity‐specific profit margins that may arise
outside equilibrium, for example, in the case of overcapitalization, should be defined in excess
of such an equilibrium‐based or reference entity‐based risk margin.

4 | EXAMPLES

We present three distributional examples. For each of them we assume that the risk‐free return
is zero. The first example is a Gaussian one, because it is convenient to calculate with Gaussian
distributions, and because for a large business, with independent and light‐tailed individual
risks, the central limit theorem allows for a Gaussian approximation for the aggregate claim.
The second example is a log‐normal one. This is one of the distributional approximations that is
currently used in the Swiss Solvency Test. Our third and last example considers the heavy‐
tailed case of a Pareto distribution.

Example 4.1 (Gaussian distribution, VaR). Let Y be Gaussian distributed with mean μ
and variance σ > 02 ; neglecting the fact thatY can also take negative values, as for typical
parameter values this happens with very small probability. Set ρ Y Y( ) = VaR ( )p for
security level p (1 2, 1)∈ ∕ . We have

C F p μ σ p μ Y

q σ p

= ( ) = + Φ ( ) > = [ ], and therefore,

= Φ ( ),

−1 −1

−1 (19)

where Φ denotes the standard normal cumulative distribution function.
For the set of test probabilities, determining in (16) the bid price of the insurance

option, we take the exponential family

γ γ{ },γ 0 ≔ ≤  (20)

where

dy
πσ

y μ γσ

σ
dy( )

1

2
exp −

( − − )

2
.γ

2

2

2
≔







 (21)

To get the economic premium P in (14), we calculate

Y F p F p
πσ

F p y

y μ γσ

σ
dy

μ σχ p γ

[ ( )] = ( ) −
1

2
( ( ) − )exp

−
( − − )

2

= + ( , ),

F p
−1 −1

2 −

( )
−1

2

2

γ

−1

∞










(22)
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where

χ p γ p p γ p γ φ p γ( , ) Φ ( ) − (Φ ( ) − )Φ(Φ ( ) − ) − (Φ ( ) − ),−1 −1 −1 −1≔ (23)

and φ = Φ′ is the density of a standard normal random variable. Note that χ p γ( , ) can be
interpreted as the loading coefficient αS in a standard deviation premium principle
P E Y α Y= ( ) + Var( )S in actuarial language (see, e.g., Albrecher et al., 2017, Chap. 7.1).

The function z z z φ z z ZΦ( ) + ( ) = [( − ) ]+↦ (where Z is standard normal) is
strictly increasing in z. Therefore, the function χ p γ( , ) is strictly increasing in γ and

χ p γ χ p γmax ( , ) = ( , )
γ γ

0
0≤ 

.

For γ = 0.150 , we get the following table for χ p( , 0.15):
The fact that for security levels p < 0.795 the condition (4) prevails over condition (13)

is due to the limited‐liability and the fact that claims may take negative values in the
Gaussian case. From (14)–(17), we find for p > 0.5

P μ σχ p γ

σχ p γ

σ p χ p γ

χ p γ

p χ p γ

= + ( , ),

RM = ( , ),

SCR = (Φ ( ) − ( , )), and

R =
( , )

Φ ( ) − ( , )
.CoC

0

0

−1
0

0

−1
0

(24)

Note that the CoC rate does not depend on μ and σ in this parametrization. For the
security level p = 0.995 of Solvency II and γ = 0.150 we find from Table 1 that the CoC rate is

R =
0.1475

2.5758 − 0.1475
= 6.07%.CoC (25)

Recall that the CoC spread is interpreted as the spread over the return of the default‐free
asset. Thus, the last result corresponds well to the wide‐spread opinion in insurance
business that this spread should be about 6%; see, for example, Federal Office of
Private Insurance (2006), Dhaene et al. (2017, Sec. 5.2), Deelstra et al. (2020, Sec. 7.2), and
the discussion in Albrecher et al. (2018, Sec. 2.2). But of course, in our example the result
depends heavily on the choice of the set, and in particular on the value of γ = 0.150 .

TABLE 1 Risk margin in percentage of the standard deviation for the Gaussian VaR case

p χ p( , 0.15) (%)

0.75 −4.03

0.95 +12.03

0.99 +14.48

0.995 +14.75

Abbreviation: VaR, Value‐at‐Risk.
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Recall from Section 3 that the value R *COC of the CoC rate when including own credit
risk in its definition is higher. For the concrete example of a Gaussian Y , with some
elementary calculations, one gets from (18)

R
p p φ p

p χ p γ
* =

Φ ( ) + (Φ ( ))

Φ ( ) − ( , )
− 1,CoC

−1 −1

−1
0

see Figure 1 for a numerical comparison.

Example 4.2 (Gaussian distribution, TVaR). In the setting of Example 4.1, let us now
consider ρ Y Y( ) = TVaR ( )p for some security level p (1 2, 1)∈ ∕ . Then

C μ σ
φ p

p
μ Y

q σ
φ p

p

= +
(Φ ( ))

1 −
> = [ ], and therefore,

=
(Φ ( ))

1 −
.

−1

−1 (26)

For the same set of test probabilities as in Example 4.1, we get

Y C μ σχ p γ[ ] = + ( , ),eγ
 (27)

with

χ p γ
φ p

p
φ p p γ φ p p γ

φ φ p p γ

( , )
(Φ ( ))

1 −
− ( (Φ ( )) (1 − ) − )Φ( (Φ ( )) (1 − ) − )

− ( (Φ ( )) (1 − ) − ).

e

−1
−1 −1

−1

≔ ∕ ∕

∕
(28)

Like in Example 4.1, this expression is maximized for γ γ= 0, and for γ = 0.150 we get the
values depicted in Table 2.

FIGURE 1 RCoC (below) and R *CoC (above) as a function of p for the Gaussian case with VaR and
γ = 0.150 . CoC, cost‐of‐capital; VaR, Value‐at‐Risk. [Color figure can be viewed at wileyonlinelibrary.com]
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Example 4.3 (Log‐normal distribution, VaR). Let Y be log‐normally distributed such that
Ylog is normally distributed with mean μ0 and variance σ2 or, equivalently, Y e= μ σZ+0 ,

where Z is standard normal. We have pure risk premium Y μ e[ ] = = μ σ+0
1
2

2
. We are

interested in calculating

C Yinf [( − ) ].+

∈ (29)

Note that apart from the infimum over measures in  this formula reminds of
evaluating a put option in a Black‐Scholes market. A crucial difference is, of course, that
there is no market that teaches us a unique to use for valuation. Instead we take the set
 to be the set under which the mean of Ylog equals μ γ(1 + )0 with γ γ0≤  and denote
the measure γ correspondingly. Now for each γ we can calculate (29) in the
following way:

C Y C Y

C Y C
πσ

y

y

y μ γ

σ
dy

C
C μ γ

σ
e

C μ γ

σ
σ

[( − ) ] = [( − )1 ]

= [ ] −
1

2
exp −

(log − (1 + ))

2

= Φ
log − (1 + )

− Φ

log − (1 + )
− .

Y C

γ

C

μ γ σ

+
{ }

2 −

0
2

2

0 (1+ )+ 1
2

0

γ γ

0
2

≤

≤

∞
 
























To calculate C we assume the VaR risk measure such that

C F p μ σ p= ( ) = exp{ + Φ ( )},−1
0

−1

where F is the log‐normal distribution function with parameters μ0 and σ2. The
expectation C Y[( − ) ]+

γ
reaches its minimum for γ γ= 0. Thus, we can express the

RCoC as

C Y

C Y

C μ

C Y
R =

− [ ]

[( − ) ]
− 1 =

−

[( − ) ]
− 1.CoC + +

γ γ0 0

TABLE 2 Risk margin in percentage of the standard deviation of the Gaussian TVaR case

p χ p( , 0.15)e (%)

0.75 +7.09

0.95 +7.24

0.99 +5.88

0.995 +5.43

Abbreviation: TVaR, Tail‐Value‐at‐Risk.
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Note that in contrast to the Gaussian case, this CoC rate depends on μ0 and σ . For
parameters μ = 0.10 and σ = 0.1 (signifying a coefficient of variation for Y of 0.1, which
is a magnitude of practical relevance) and γ = 0.150 , we get the following table:

p RCoC (%)

0.75 −8.9

0.95 7.1

0.99 6.0

0.995 5.4

The table illustrates for p = 0.75 again the possibility of a negative CoC rate for low p.
For the parameters μ σ= 0.1, = 0.10 , and p = 0.995, when varying the parameter γ0, we
get the following table:

γ0 RCoC(%)

0.05 1.7

0.10 3.5

0.15 5.4

0.20 7.4

The table illustrates the increasing CoC rate in response to the increasing risk aversion
by market participants for a given level of risk tolerance of the regulator.

Example 4.4 (Log‐normal distribution, TVaR). In the log‐normal setting of Example 4.3
let us now consider ρ Y Y( ) = TVaR ( )p for some security level p (1 2, 1)∈ ∕ . The only
change is that we have to replace the VaR capital requirement by the corresponding
TVaR requirement

C
μ

p
p σ=

1 −
(1 − Φ[Φ ( ) − ]).−1

For parameters μ = 0.10 and σ = 0.1 (signifying a coefficient of variation for
Y of 0.1, which is a magnitude of practical relevance) and γ = 0.150 , we get the following table:

p RCoC (%)

0.75 6.1

0.95 6.6

0.99 5.2

0.995 4.8
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For the parameters μ σ= 0.1, = 0.10 , and p = 0.99, when varying the parameter γ0,
we get the following table:

γ0 RCoC(%)

0.05 1.6

0.10 3.4

0.15 5.2

0.20 7.1

Thus, these values are rather similar between the VaR and the TVaR case. Note that
we use identical parameters in the two cases, and we only vary the security level from
0.995 in the VaR case to 0.99 in the TVaR case.

Example 4.5 (Pareto distribution, VaR). Assume now that Y is Pareto distributed with
threshold y > 00 and tail parameter α > 1. We then have the pure risk premium
μ Y y= [ ] =

α

α0 − 1
. We choose security level p α(1 − (1 − 1 ) , 1)α∈ ∕ to ensure for the

VaR that F p C y p μ( ) = = (1 − ) >α−1
0

−1∕ . Let us choose the set of test probabilities as

γ γ{ }, withγ 0M ≔ ≤  (30)

dy y
γ αy

y
dy( ) ( )

(1 + )
,γ y

γ α

γ α[ , )
0
(1+ )

(1+ ) +10
≔ ∞ (31)

and γ α0 < < 1 − 10 ∕ , that is, the distortion here is with respect to the tail parameter.
Straightforward calculations lead to

Y F p
y

γ α
γ α psup [ ( )] = sup

(1 + ) − 1
((1 + ) − (1 − ) ).

γ γ

α γ−1 0 1−1 ( (1+ ))

0∈ ≤

∕
 

The latter expression turns out to be decreasing in γ in the specified range, so that the
maximum is attained for γ γ= − 0. Correspondingly, the economic premium P is given by

P
y

γ α
γ α p=

(1 − ) − 1
((1 − ) − (1 − ) ),α γ0

0
0

1−1 ( (1− ))0∕

the risk margin is given by

y

γ α
γ α p

α

α
yRM =

(1 − ) − 1
((1 − ) − (1 − ) ) −

− 1
,α γ0

0
0

1−1 ( (1− ))
0

0∕

and y p PSCR= (1 − ) −α0
−1∕ . The following table illustrates the resulting CoC rates for

p α= 0.995, = 2, and y = 0.550 (which leads to μ = 1.11 as in the log‐normal case, but
here the variance is not finite).
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γ0 RCoC(%)

0.10 1.09

0.15 2.25

0.20 3.74

0.25 5.72

0.30 8.48

Figure 2 depicts RCoC for this case as a function of p, together with R*CoC (the
analogous quantity from Equation 18 when own credit risk is included in the definition
of μ). One sees that in the heavy‐tailed case the distinction between RCoC and R*CoC is
even more important than for the Gaussian case.

Example 4.6 (Pareto distribution, TVaR). In the setting of Example 4.5, consider now
ρ Y Y( ) = TVaR ( )p . Using the fact that conditional on being larger than YVaR ( )p , the
random variable Y is Pareto distributed with tail parameter α and new threshold
y Y y p= VaR ( ) = (1 − )p

α
1 0

−1∕ , one immediately arrives at

C ρ Y
α

α

y

p
= ( ) =

− 1 (1 − )
,

α

0

1∕

which is larger than μ for every p (0, 1)∈ . One obtains

Y C
y α

α
α p αsup [ ] = sup

( − 1)
( − 1 − (1 − ) (1 − 1 ) ),

γ γ

γ

γ
γ

α
γ
α0

2
1−1 γ γ

0

∕
∈ ≤

∕
 

with α γ α= (1 + )γ . Since the above expression is decreasing in αγ, we get

FIGURE 2 RCoC (below) and R*CoC (above) as a function of p for the Pareto case with VaR and γ = 0.20 as a
function of p. CoC, cost‐of‐capital; VaR, Value‐at‐Risk. [Color figure can be viewed at wileyonlinelibrary.com]

ALBRECHER ET AL. | 1155

 15396975, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12406 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


P
y γ α

γ α
γ α p

γ α

=
(1 − )

((1 − ) − 1)
((1 − ) − 1 − (1 − )

(1 − 1 ((1 − ) )) ),

γ α

γ α

0 0

0
2 0

1−1 ((1− ) )

0
(1− )

0

0∕

∕

together with P yRM = −
α

α − 1 0 and PSCR = −
α

α

y

p− 1 (1− ) α

0

1∕ .

For α y= 2, = 0.550 , and p = 0.99 (which is the p value of interest in the Swiss
Solvency Test), this leads to a CoC rate as given in the following table:

γ0 RCoC(%)

0.10 0.92

0.15 1.77

0.20 2.86

0.25 4.36

0.30 6.46

We observe that in the Pareto case the TVaR on the security level 0.99 is less
conservative than the VaR case on the security level 0.995. In fact, the differences are
much bigger than in the log‐normal case.

Figure 3 depicts the situation of Figure 2 for the case of TVaR as a function of p,
which shows less sensitivity with respect to p and similar absolute values of RCoC in the
region of interest.

5 | CONCLUSION

To counterbalance risk in the risk‐based approach for insurance regulation, a high level of
capital above the “best‐estimate” is required by the regulator and provided by shareholders.
The price for this amount of capital eventually has to be paid by the policyholders, and the

FIGURE 3 RCoC (below) and R*CoC (above) as a function of p for the Pareto case with TVaR and γ = 0.20 as a
function of p. CoC, cost‐of‐capital; TVaR, Tail‐Value‐at‐Risk. [Color figure can be viewed at wileyonlinelibrary.com]
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CoC rate is this price per money unit. Thus the CoC has to be interpreted in an equilibrium
between shareholders, policyholders, and the regulator. While the implicit limited‐liability
option in current regulatory regimes has been widely discussed (see, e.g., Filipovic et al.,
2015), the above triangular constellation seems not having been made explicit so far, and
this is what we pursue in this paper.

We deliberately keep the underlying model simple, to facilitate a transparent discussion
of the approach. This includes the restriction to a one‐period model, a focus on the liability
aspect only, and for the valuation of the illiquid liabilities we rely on the approach of bid
and ask prices in incomplete markets from Madan and Cherny (2010) and Madan and
Schoutens (2010); for alternatives, see, for instance, Barigou et al. (2021) and Dhaene et al.
(2017). Under these assumptions, the perspective proposed in this paper leads to a way to
challenge and/or justify explicit specifications of this rate, like the often used 6% (see, e.g.,
the specifications in the IAA position paper; International Actuarial Association [IAA],
2009, p. 79), or the 4% often assumed in practice in recent years (according to personal
communications with some practitioners).

For the numerical examples some assumptions have to be imposed, especially
concerning the degree of risk aversion of the shareholders. A sensitivity analysis of the
chosen quantities will lead to modified figures in an analogous way. Inversely, every
concrete use of a CoC rate can receive a specific calibration and corresponding economic
interpretation within the preferred model setup. We worked out resulting CoC rates for
various underlying distributions and regulatory risk measures for varying security levels,
providing particular justifications for the magnitudes of these rates.

In some situations negative CoC rates may appear (reminding of negative interest rates). As
discussed in the paper, these might occur for several reasons, but can in particular point out an
insufficient requirement from the regulator, and a corresponding potential for abuse of the
shareholders' limited‐liability.

For future work, it can be interesting to extend the approach introduced in this paper to the
situation of run‐off patterns across several accounting years and multiperiod models in general
(where other pricing methods are frequently benchmarked to the CoC approach, see, e.g.,
Zeddouk & Devolder, 2019). Finally, a more detailed joint view on the asset and liability side of
the solvency balance sheet of an insurance company can provide a further customized
interpretation of a concrete value of the CoC rate for a particular purpose.
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