Optimal reinsurance under variance related premium principles
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20120041271</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20121010181000.0</controlfield>
<controlfield tag="008">121001e20120903esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20090026469</subfield>
<subfield code="a">Chi, Y.</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Optimal reinsurance under variance related premium principles</subfield>
<subfield code="c">Y. Chi</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper, we investigate the optimal form of reinsurance when the insurer seeks to minimize the value at risk(VaR) or the conditional value at risk(CVaR) of his/her total risk exposure. In order to exclude the moral hazard from a reinsurance treaty, both the ceded and retained loss functions are constrained to be increasing. Under the additional assumption that the reinsurance premium is calculated by a variance related principle, we show that the layer reinsurance is always optimal over both the VaR and CVaR criteria. Finally, the variance and standard deviation premium principles are applied to illustrate how to derive the optimal deductible and the upper limit of layer reinsurance.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080552367</subfield>
<subfield code="a">Reaseguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080604394</subfield>
<subfield code="a">Valoración de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080600501</subfield>
<subfield code="a">Contrato de reaseguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20090039629</subfield>
<subfield code="a">Riesgo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080588953</subfield>
<subfield code="a">Análisis de riesgos</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">03/09/2012 Volumen 51 Número 2 - septiembre 2012 , p. 310-321</subfield>
</datafield>
</record>
</collection>