Búsqueda

Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20130005898</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20130221101053.0</controlfield>
    <controlfield tag="008">130219e20121105esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">2</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110012106</subfield>
      <subfield code="a">Chi, Yichun</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability</subfield>
      <subfield code="c">Yichun Chi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we investigate the problem of purchasing a reinsurance policy that minimizes the risk-adjusted value of an insurers liability, where the valuation is carried out using a cost-of-capital approach. In order to exclude the moral hazard, we assume that both the insurer and reinsurer are obligated to pay more for larger loss in a typical reinsurance treaty. Moreover, the reinsurance premium principle is assumed to satisfy three axioms: law invariance, risk loading and preserving convex order. The proposed class of premium principles is quite general in the sense that it contains all the widely used premium principles except Esscher principle listed in Young (2004). When capital at risk is measured by the value at risk (VaR) or conditional value at risk (CVaR), we find it is optimal for the insurer to cede two separate layers over the prescribed premium principles. By imposing an additional weak constraint on the premium principle, we further get that the reinsurance in the form of a layer is optimal. Finally, to illustrate the applicability of our results, we derive explicitly the optimal one-layer reinsurance for expected value principle and Wangs premium principle, and show that two-layer reinsurance may be optimal for Dutch premium principle.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">05/11/2012 Volumen 42 Número 2  - noviembre 2012 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>