Búsqueda

Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order

Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20130032887
003  MAP
005  20131010175421.0
008  131008e20130902esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20080650322‎$a‎Chun Cheung, Ka
24510‎$a‎Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order‎$c‎Ka Chun Cheung, Ambrose Lo
520  ‎$a‎In this paper, we characterize counter-monotonic and upper comonotonic random vectors by the optimality of the sum of their components in the senses of the convex order and tail convex order respectively. In the first part, we extend the characterization of comonotonicity by Cheung (2010) and show that the sum of two random variables is minimal with respect to the convex order if and only if they are counter-monotonic. Three simple and illuminating proofs are provided. In the second part, we investigate upper comonotonicity by means of the tail convex order. By establishing some useful properties of this relatively new stochastic order, we prove that an upper comonotonic random vector must give rise to the maximal tail convex sum, thereby completing the gap in Nam et al. (2011)¿s characterization. The relationship between the tail convex order and risk measures along with conditions under which the additivity of risk measures is sufficient for upper comonotonicity is also explored.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎02/09/2013 Volumen 53 Número 2 - septiembre 2013
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A