Búsqueda

Bayesian analysis of loss reserving using dynamic models with generalized beta distribution

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20130032900</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20131010175421.0</controlfield>
    <controlfield tag="008">131008e20130902esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130014050</subfield>
      <subfield code="a">Dong, A.X.D.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Bayesian analysis of loss reserving using dynamic models with generalized beta distribution</subfield>
      <subfield code="c">A.X.D. Dong</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">A Bayesian approach is presented in order to model long tail loss reserving data using the generalized beta distribution of the second kind (GB2) with dynamic mean functions and mixture model representation. The proposed GB2 distribution provides a flexible probability density function, which nests various distributions with light and heavy tails, to facilitate accurate loss reserving in insurance applications. Extending the mean functions to include the state space and threshold models provides a dynamic approach to allow for irregular claims behaviors and legislative change which may occur during the claims settlement period. The mixture of GB2 distributions is proposed as a mean of modeling the unobserved heterogeneity which arises from the incidence of very large claims in the loss reserving data. It is shown through both simulation study and forecasting that model parameters are estimated with high accuracy.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">02/09/2013 Volumen 53 Número 2 - septiembre 2013 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>