Búsqueda

Pricing variable annuity guarantees in a local volatility framework

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140000630</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140207130538.0</controlfield>
    <controlfield tag="008">140107e20131104esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">34</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100064160</subfield>
      <subfield code="a">Deelstra, Griselda</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Pricing variable annuity guarantees in a local volatility framework</subfield>
      <subfield code="c">Griselda Deelstra, Grégory Rayée</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper the authors study the price of Variable Annuity Guarantees, particularly those of Guaranteed Annuity Options (GAO) and Guaranteed Minimum Income Benefit (GMIB), in the settings of a derivative pricing model where the underlying spot (the fund) is locally governed by a geometric Brownian motion with local volatility, whil interest rates follow a Hull-White one-factor Gaussian model</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080552114</subfield>
      <subfield code="a">Pensiones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080554927</subfield>
      <subfield code="a">Jubilación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140002160</subfield>
      <subfield code="a">Rayée, Grégory</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">04/11/2013 Volumen 53 Número 3 - noviembre 2013 , p.650-663</subfield>
    </datafield>
  </record>
</collection>