Búsqueda

Risk-minimizing reinsurance protection for multivariate risks

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140015580</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140514163124.0</controlfield>
    <controlfield tag="008">140508e20140303esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">5</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090033153</subfield>
      <subfield code="a">Cheung, K.C.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Risk-minimizing reinsurance protection for multivariate risks</subfield>
      <subfield code="c">K. C. Cheung, K. C. J. Sung, S. C. P. Yam</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article, we study the problem of optimal reinsurance policy for multivariate risks whose quantitative analysis in the realm of general law-invariant convex risk measures, to the best of our knowledge, is still absent in the literature. In reality, it is often difficult to determine the actual dependence structure of these risks. Instead of assuming any particular dependence structure, we propose the minimax optimal reinsurance decision formulation in which the worst case scenario is first identified, then we proceed to establish that the stop-loss reinsurances are optimal in the sense that they minimize a general law-invariant convex risk measure of the total retained risk. By using minimax theorem, explicit form of and sufficient condition for ordering the optimal deductibles are also obtained.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080552367</subfield>
      <subfield code="a">Reaseguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080588953</subfield>
      <subfield code="a">Análisis de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080604721</subfield>
      <subfield code="a">Análisis multivariante</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20110031916</subfield>
      <subfield code="a">Sung, K.C.J.</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140008476</subfield>
      <subfield code="a">Yam, S. C. P.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">03/03/2014 Volumen 81 Número 1 - marzo 2014 , p. 219-236</subfield>
    </datafield>
  </record>
</collection>