Búsqueda

The CBD mortality indexes : modeling and applications

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140017157</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20140520144325.0</controlfield>
    <controlfield tag="008">140519e20140203esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20110016883</subfield>
      <subfield code="a">Chan, Wai-Sum</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="4">
      <subfield code="a">The CBD mortality indexes</subfield>
      <subfield code="b">: modeling and applications</subfield>
      <subfield code="c">Wai-Sum Chan, Johnny Siu-Hang Li, Jackie Li</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Most extrapolative stochastic mortality models are constructed in a similar manner. Specifically, when they are fitted to historical data, one or more series of time-varying parameters are identified. By extrapolating these parameters to the future, we can obtain a forecast of death probabilities and consequently cash flows arising from life contingent liabilities. In this article, we first argue that, among various time-varying model parameters, those encompassed in the Cairns-Blake-Dowd (CBD) model (also known as Model M5) are most suitably used as indexes to indicate levels of longevity risk at different time points. We then investigate how these indexes can be jointly modeled with a more general class of multivariate time-series models, instead of a simple random walk that takes no account of cross-correlations. Finally, we study the joint prediction region for the mortality indexes. Such a region, as we demonstrate, can serve as a graphical longevity risk metric, allowing practitioners to compare the longevity risk exposures of different portfolios readily.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">03/02/2014 Tomo 18 Número 1 - 2014 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>