Empirical approach for optimal reinsurance design
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140025268</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20140731103918.0</controlfield>
<controlfield tag="008">140716e20140602esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20100003206</subfield>
<subfield code="a">Seng Tan, Ken</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Empirical approach for optimal reinsurance design</subfield>
<subfield code="c">Ken Seng Tan, Chengguo Weng</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This article proposes a novel and practical approach of addressing optimal reinsurance via an empirical approach. This method formulates reinsurance models using the observed data directly and has advantages including (1) transformation of an infinite dimensional optimization problem to a finite dimension, (2) no required explicit distributional assumption on the underlying risk, and (3) many empirical-based reinsurance models can be solved efficiently using the second-order conic programming. This allows insurers to incorporate many desirable objective functions and constraints while still retaining the ease of obtaining optimal reinsurance strategies. Numerical examples, including applications to actual Danish fire loss data, are provided to highlight the efficiency and the practicality of the proposed empirical models. The stability and consistency of the empirical-based solutions are also analyzed numerically.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611569</subfield>
<subfield code="a">Minimización de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20090025479</subfield>
<subfield code="a">Distribución de pérdidas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080589356</subfield>
<subfield code="a">Cálculo de la prima</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080552367</subfield>
<subfield code="a">Reaseguro</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20080119546</subfield>
<subfield code="a">Weng, Chengguo</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">02/06/2014 Tomo 18 Número 2 - 2014 , p. 315-342</subfield>
</datafield>
</record>
</collection>