Búsqueda

Systemic risk and the interconnectedness between banks and insurers : an econometric analysis

Recursos electrónicos
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20140031900
003  MAP
005  20140918165450.0
008  140915e20140901esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎7
24500‎$a‎Systemic risk and the interconnectedness between banks and insurers‎$b‎: an econometric analysis‎$c‎Hua Chen...[et.al]
520  ‎$a‎This article uses daily market value data on credit default swap spreads and intraday stock prices to measure systemic risk in the insurance sector. Using the systemic risk measure, we examine the interconnectedness between banks and insurers with Granger causality tests. Based on linear and nonlinear causality tests, we find evidence of significant bidirectional causality between insurers and banks. However, after correcting for conditional heteroskedasticity, the impact of banks on insurers is stronger and of longer duration than the impact of insurers on banks. Stress tests confirm that banks create significant systemic risk for insurers but not vice versa.
650 4‎$0‎MAPA20080586294‎$a‎Mercado de seguros
650 4‎$0‎MAPA20080538217‎$a‎Banca
650 4‎$0‎MAPA20080557935‎$a‎Econometría
650 4‎$0‎MAPA20080588953‎$a‎Análisis de riesgos
650 4‎$0‎MAPA20100016923‎$a‎Riesgo sistémico
650 4‎$0‎MAPA20080623920‎$a‎Análisis económico-financiero
650 4‎$0‎MAPA20080592059‎$a‎Modelos predictivos
700  ‎$0‎MAPA20090011274‎$a‎Chen, Hua
7730 ‎$w‎MAP20077000727‎$t‎The Journal of risk and insurance‎$d‎Nueva York : The American Risk and Insurance Association, 1964-‎$x‎0022-4367‎$g‎01/09/2014 Volumen 81 Número 3 - septiembre 2014 , p. 623-652
856  ‎$y‎MÁS INFORMACIÓN‎$u‎mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A