A Linear regression approach to modeling mortality rates of different forms
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20150018366</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911212107.0</controlfield>
<controlfield tag="008">150519e20150202esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20150010858</subfield>
<subfield code="a">Chi-Liang Tsai, Cary</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="2">
<subfield code="a">A Linear regression approach to modeling mortality rates of different forms</subfield>
<subfield code="c">Cary Chi-Liang Tsai, Shuai Yang</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this article, we propose a linear regression approach to modeling mortality rates of different forms. First, we repeat to fit a mortality sequence for each of K years (called the fitting years) with another mortality sequence of equal length for some year (called the base year) differing by tj years (j = 1, , K) using a simple linear regression. Then we fit the sequences of the estimated slope and intercept parameters of length K, respectively, with the sequence of {tj} by each of the simple linear regression and random walk with drift models. The sequences of the fitted slope and intercept parameters can be used for forecasting deterministic and stochastic mortality rates. Forecasting performances are compared among these two approaches and the Lee-Carter model. The CBD model is also included for comparisons for an elderly age group. Moreover, we give a central-death-ratelinked security to hedge mortality/longevity risks. Optimal units, purchased from the special purpose vehicle, which maximize the hedge effectiveness for life insurers and annuity providers, respectively, are derived and can be expressed in terms of the cumulative distribution function of the standard normal random variable. A measure with hedge cost involved, called hedge effectiveness rate, for comparing risk reduction amount per dollar spent among mortality models is proposed. Finally, numerical examples are presented for illustrations.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080578848</subfield>
<subfield code="a">Análisis de datos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586454</subfield>
<subfield code="a">Modelos analíticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20150011329</subfield>
<subfield code="a">Yang, Shuai</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">02/02/2015 Tomo 19 Número 1 - 2015 , p. 1-23</subfield>
</datafield>
</record>
</collection>