Búsqueda

A Reinsurance game between two insurance companies with nonlinear risk processes

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20150023698</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20150707153724.0</controlfield>
    <controlfield tag="008">150626e20150504esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130011585</subfield>
      <subfield code="a">Meng, Hui</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Reinsurance game between two insurance companies with nonlinear risk processes</subfield>
      <subfield code="c">Hui Meng, Shuanming Li, Zhuo Jin</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we consider a stochastic differential reinsurance game between two insurance companies with nonlinear (quadratic) risk control processes. We assume that the goal of each insurance company is to maximize the exponential utility of the difference between its terminal surplus and that of its competitor at a fixed terminal time T. First, we give an explicit partition (including nine subsets) of time interval [0,T]. Further, on every subset, an explicit Nash equilibrium strategy is derived by solving a pair of HamiltonJacobiBellman equations. Finally, for some special cases, we analyze the impact of time t and quadratic control parameter on the Nash equilibrium strategy and obtain some simple partition of [0,T]. Based on these results, we apply some numerical analysis of the time t, quadratic control parameter and competition sensitivity parameter on the Nash equilibrium strategy and the value function.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">04/05/2015 Volumen 62 - mayo 2015 </subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="y">MÁS INFORMACIÓN</subfield>
      <subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
    </datafield>
  </record>
</collection>