Búsqueda

Optimal reinsurance revisited - A geometric approach

Recurso electrónico / electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20150026989
003  MAP
005  20150911144749.0
008  150805e20100503esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20080650322‎$a‎Chun Cheung, Ka
24510‎$a‎Optimal reinsurance revisited - A geometric approach‎$c‎Ka Chun Cheung
520  ‎$a‎In this paper, we reexamine the two optimal reinsurance problems studied in Cai et al. (2008), in which the objectives are to find the optimal reinsurance contracts that minimize the value-at-risk (VaR) and the conditional tail expectation (CTE) of the total risk exposure under the expectation premium principle. We provide a simpler and more transparent approach to solve these problems by using intuitive geometric arguments. The usefulness of this approach is further demonstrated by solving the VaR-minimization problem when the expectation premium principle is replaced by Wang's premium principle.
7730 ‎$w‎MAP20077000420‎$t‎Astin bulletin‎$d‎Belgium : ASTIN and AFIR Sections of the International Actuarial Association‎$x‎0515-0361‎$g‎03/05/2010 Volumen 40 Número 1 - mayo 2010 , p. 221-239