Búsqueda

Optimal reinsurance revisited - A geometric approach

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Chun Cheung, Ka</dc:creator>
<dc:date>2010-05-03</dc:date>
<dc:description xml:lang="es">Sumario: In this paper, we reexamine the two optimal reinsurance problems studied in Cai et al. (2008), in which the objectives are to find the optimal reinsurance contracts that minimize the value-at-risk (VaR) and the conditional tail expectation (CTE) of the total risk exposure under the expectation premium principle. We provide a simpler and more transparent approach to solve these problems by using intuitive geometric arguments. The usefulness of this approach is further demonstrated by solving the VaR-minimization problem when the expectation premium principle is replaced by Wang's premium principle.
</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/153283.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Optimal reinsurance revisited - A geometric approach</dc:title>
<dc:relation xml:lang="es">En: Astin bulletin. - Belgium : ASTIN and AFIR Sections of the International Actuarial Association = ISSN 0515-0361. - 03/05/2010 Volumen 40 Número 1 - mayo 2010 , p. 221-239</dc:relation>
</rdf:Description>
</rdf:RDF>