Territorial risk classification using spatially dependent frequency-severity models
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Valor |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20170019800 | ||
003 | MAP | ||
005 | 20170621141757.0 | ||
008 | 170614e20170501esp|||p |0|||b|spa d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a6 | ||
100 | $0MAPA20100048726$aShi, Peng | ||
245 | 1 | 0 | $aTerritorial risk classification using spatially dependent frequency-severity models$cPeng Shi, Kun Shi |
520 | $aIn non-life insurance, territory-based risk classification is useful for various insurance operations including marketing, underwriting, ratemaking, etc. This paper proposes a spatially dependent frequency-severity modeling framework to produce territorial risk scores. The framework applies to the aggregated insurance claims where the frequency and severity components examine the occurrence rate and average size of insurance claims in each geographic unit, respectively. We employ the bivariate conditional autoregressive models to accommodate the spatial dependency in the frequency and severity components, as well as the cross-sectional association between the two components. Using a town-level claims data of automobile insurance in Massachusetts, we demonstrate applications of the model outputterritorial risk scoresin ratemaking and market segmentation. | ||
650 | 4 | $0MAPA20080607487$aOperaciones de seguros | |
650 | 4 | $0MAPA20080613327$aClasificación de riesgos | |
650 | 4 | $0MAPA20080602659$aModelos econométricos | |
700 | 1 | $0MAPA20170007906$aShi, Kun | |
773 | 0 | $wMAP20077000420$tAstin bulletin$dBelgium : ASTIN and AFIR Sections of the International Actuarial Association$x0515-0361$g01/05/2017 Volumen 47 Número 2 - mayo 2017 , p. 437-465 |