Búsqueda

What if variable annuity policyholders with guaranteed lifelong withdrawal benefit were rational?

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180010040</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180425162233.0</controlfield>
    <controlfield tag="008">180403e20180301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20180004506</subfield>
      <subfield code="a">Piscopo, Gabrieffa</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">What if variable annuity policyholders with guaranteed lifelong withdrawal benefit were rational?</subfield>
      <subfield code="c">Gabrieffa Piscopo, Philipp Rüede</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article examines the lapse risk inherent to the guaranteed lifelong with-drawal benefit option embedded in a variable annuity product valuated from a pure derivatives perspective, that is, as a Bermudian option given to the policyholder. We assume rational behavior and quantify the potential impact of the lapse risk, defined as the difference between no lapse and optimal lapsing. We develop a sensitivity analysis that shows how the value of the product varies with the key parameters, and calculate the fair fee using Monte Carlo simulations. Empirical analyses are performed and numerical results are provided</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080608606</subfield>
      <subfield code="a">Simulación Monte Carlo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578879</subfield>
      <subfield code="a">Análisis empírico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080590567</subfield>
      <subfield code="a">Empresas de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180005183</subfield>
      <subfield code="a">Rüede, Philipp</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">01/03/2018 Volumen 85 Número 1 - marzo 2018 , p. 203-217</subfield>
    </datafield>
  </record>
</collection>