Claims reserving with a stochastic vector projection
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20180016998</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20180615131306.0</controlfield>
<controlfield tag="008">180606e20180301usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080112387</subfield>
<subfield code="a">Portugal, Luis</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Claims reserving with a stochastic vector projection</subfield>
<subfield code="c">Luís Portugal, Athanasios A. Pantelous, Hirbod Assa</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In the last three decades, a variety of stochastic reserving models have been proposed in the general insurance literature mainly using (or reproducing) the well-known Chain-Ladder claims-reserving estimates. In practice, when the data do not satisfy the Chain-Ladder assumptions, high prediction errors might occur. Thus, in this article, a combined methodology is proposed based on the stochastic vector projection method and uses the regression through the origin approach of Murphy, but with heteroscedastic errors instead, and different from those that used by Mack. Furthermore, the Mack distribution-free model appears to have higher prediction errors when compared with the proposed one, particularly, for data sets with increasing (regular) trends. Finally, three empirical examples with irregular and regular data sets illustrate the theoretical findings, and the concepts of best estimate and risk margin are reported.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586447</subfield>
<subfield code="a">Modelo estocástico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592059</subfield>
<subfield code="a">Modelos predictivos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080597733</subfield>
<subfield code="a">Modelos estadísticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592042</subfield>
<subfield code="a">Modelos matemáticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20120011137</subfield>
<subfield code="a">Predicciones estadísticas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080582340</subfield>
<subfield code="a">Reservas técnicas</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20150002808</subfield>
<subfield code="a">Pantelous, Athanasios A.</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20180008092</subfield>
<subfield code="a">Assa, Hirbod</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">05/03/2018 Tomo 22 Número 1 - 2018 , p. 22-39</subfield>
</datafield>
</record>
</collection>