Búsqueda

An Introduction to statistical learning : with applications in R

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cam a22000004b 4500</leader>
    <controlfield tag="001">MAP20180018671</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180705141244.0</controlfield>
    <controlfield tag="008">180625s2018    usa||||       ||| ||eng d</controlfield>
    <datafield tag="010" ind1=" " ind2=" ">
      <subfield code="a">2013936251</subfield>
    </datafield>
    <datafield tag="020" ind1=" " ind2=" ">
      <subfield code="a">978-1-4614-7137-0 </subfield>
    </datafield>
    <datafield tag="020" ind1=" " ind2=" ">
      <subfield code="a">978-1-4614-7138-7 (eBook)</subfield>
    </datafield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">937.42</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="3">
      <subfield code="a">An Introduction to statistical learning </subfield>
      <subfield code="b">: with applications in R</subfield>
      <subfield code="c">Gareth James...[et al.]</subfield>
    </datafield>
    <datafield tag="250" ind1=" " ind2=" ">
      <subfield code="a">Corrected at 8th. printing 2017</subfield>
    </datafield>
    <datafield tag="260" ind1=" " ind2=" ">
      <subfield code="a">New York [etc.]</subfield>
      <subfield code="b">Springer </subfield>
      <subfield code="c">2017</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">440 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Statistical learning refers to a vast set of tools for understanding data.These tools can be classified as supervised or unsupervised. Broadly speaking, supervised statistical learning involves building a statistical model for predicting, or estimating, an output based on one or more inputs.Problems of this nature occur in fields as diverse as business, medicine, astrophysics, and public policy. With unsupervised statistical learning, there are inputs but no supervising output; nevertheless we can learn relationships and structure from such data. To provide an illustration of some applications of statistical learning, we briefly discuss three real-world data sets that are considered in this book</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080597733</subfield>
      <subfield code="a">Modelos estadísticos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602659</subfield>
      <subfield code="a">Modelos econométricos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080610708</subfield>
      <subfield code="a">Estadística de muestreo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080551797</subfield>
      <subfield code="a">Muestreos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080593810</subfield>
      <subfield code="a">Tablas estadísticas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080554156</subfield>
      <subfield code="a">Ejercicios</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180008757</subfield>
      <subfield code="a">James, Gareth</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20180008764</subfield>
      <subfield code="a">Springer</subfield>
    </datafield>
  </record>
</collection>