Toward a systematic approach to the economic effects of risk : characterizing utility functions
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20180020063</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20180828145704.0</controlfield>
<controlfield tag="008">180702e20180601usa|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20080219314</subfield>
<subfield code="a">Gollier, Christian</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Toward a systematic approach to the economic effects of risk</subfield>
<subfield code="b">: characterizing utility functions</subfield>
<subfield code="c">Christian Gollier, Miles S. Kimball</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The diffidence theorem, together with complementary tools, can aid in illuminating a broad set of questions about how to mathematically characterize the set of utility functions with specified economic properties. This article establishes the technique and illustrates its application to many questions, old and new. For example, among many other older and other technically more difficult results, it is shown that (1) several implications of globally greater risk aversion depend on distinct mathematical properties when the initial wealth level is known, (2) whether opening up a new asset market increases or decreases saving depends on whether the reciprocal of marginal utility is concave or convex, and (3) whether opening up a new asset market raises or lowers risk aversion toward small independent risks depends on whether absolute risk aversion is convex or concave</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080588953</subfield>
<subfield code="a">Análisis de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080590468</subfield>
<subfield code="a">Economía del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080582951</subfield>
<subfield code="a">Teoría del riesgo</subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20180012174</subfield>
<subfield code="a">Kimball, Miles S.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="g">01/06/2018 Volumen 85 Número 2 - junio 2018 , p. 397-430</subfield>
</datafield>
</record>
</collection>