Búsqueda

A Generalized loss ratio method dealing with uncertain volume measures

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180022579</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180717154923.0</controlfield>
    <controlfield tag="008">180712e20180501bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140007493</subfield>
      <subfield code="a">Riegel, Ulrich</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Generalized loss ratio method dealing with uncertain volume measures</subfield>
      <subfield code="c">Ulrich Riegel</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Unlike chain ladder, the loss ratio method requires volume measures. Typically, these volumes are assumed to be known. In practice, however, accurate volume measures are rarely available. We interpret the available volumes as estimators for the true volume measures and analyze the consequences for the loss ratio method. In particular, we calculate the mean squared error of prediction, including uncertainty of volume measures, and derive approximately optimal weights for the observed incremental loss ratios. We then introduce a generalization of the loss ratio method that is tailored to the situation of uncertain volume measures and calculate the prediction uncertainty of this generalized loss ratio method</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080614324</subfield>
      <subfield code="a">Indice de siniestralidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586447</subfield>
      <subfield code="a">Modelo estocástico</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/05/2018 Volumen 48 Número 2 - mayo 2018 , p. 699-747</subfield>
    </datafield>
  </record>
</collection>