Búsqueda

Calendar year effect modeling for claims reserving in hglm

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190032124</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20191106164250.0</controlfield>
    <controlfield tag="008">191106e20190902esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20130010403</subfield>
      <subfield code="a">Gigante, Patrizia</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Calendar year effect modeling for claims reserving in hglm</subfield>
      <subfield code="c">Patrizia Gigante, Liviana Picech, Luciano Sigalotti</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Claims reserving models are usually based on data recorded in run-off tables, according to the origin and the development years of the payments. The amounts on the same diagonal are paid in the same calendar year and are influenced by some common effects, for example, claims inflation, that can induce dependence among payments. We introduce hierarchical generalized linear models (HGLM) with risk parameters related to the origin and the calendar years, in order to model the dependence among payments of both the same origin year and the same calendar year. Besides the random effects, the linear predictor also includes fixed effects. All the parameters are estimated within the model by the h-likelihood approach. The prediction for the outstanding claims and an approximate formula to evaluate the mean square error of prediction are obtained. Moreover, a parametric bootstrap procedure is delineated to get an estimate of the predictive distribution of the outstanding claims. A Poisson-gamma HGLM with origin and calendar year effects is studied extensively and a numerical example is provided. We find that the estimates of the correlations can be significant for payments in the same calendar year and that the inclusion of calendar effects can determine a remarkable impact on the prediction uncertainty.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602642</subfield>
      <subfield code="a">Modelos de simulación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080629618</subfield>
      <subfield code="a">Reservas técnicas para siniestros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080567118</subfield>
      <subfield code="a">Reclamaciones</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180003073</subfield>
      <subfield code="a">Picech, Liviana</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20180003080</subfield>
      <subfield code="a">Sigalotti, Luciano</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">02/09/2019 Volumen 49 Número 3 - septiembre 2019 , p. 763-786</subfield>
    </datafield>
  </record>
</collection>