Búsqueda

Natural hedges with immunization strategies of mortality and interest rates

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200009948</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200326142035.0</controlfield>
    <controlfield tag="008">200326e20200101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140024919</subfield>
      <subfield code="a">Lin, Tzuling</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Natural hedges with immunization strategies of mortality and interest rates</subfield>
      <subfield code="c">Tzuling Lin,  Cary Chi-Liang Tsai</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we first derive closed-form formulas for mortality-interest durations and convexities of the prices of life insurance and annuity products with respect to an instantaneously proportional change and an instantaneously parallel movement, respectively, in ?? (the force of mortality-interest), the addition of ? (the force of mortality) and ? (the force of interest). We then build several mortality-interest duration and convexity matching strategies to determine the weights of whole life insurance and deferred whole life annuity products in a portfolio and evaluate the value at risk and the hedge effectiveness of the weighted portfolio surplus at time zero. Numerical illustrations show that using the mortality-interest duration and convexity matching strategies with respect to an instantaneously proportional change in ?? can more effectively hedge the longevity risk and interest rate risk embedded in the deferred whole life annuity products than using the mortality-only duration and convexity matching strategies with respect to an instantaneously proportional shift or an instantaneously constant movement in ? only.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578374</subfield>
      <subfield code="a">Tasas de interés</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080570590</subfield>
      <subfield code="a">Seguro de vida</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150010858</subfield>
      <subfield code="a">Chi-Liang Tsai, Cary</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2020 Volumen 50 Número 1 - enero 2020 , p. 155-185</subfield>
    </datafield>
  </record>
</collection>