Búsqueda

Bilateral risk sharing with heterogeneous beliefs and exposure constraints

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200009986</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200326142028.0</controlfield>
    <controlfield tag="008">200326e20200101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20210031915</subfield>
      <subfield code="a">Boonen, Tim J</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Bilateral risk sharing with heterogeneous beliefs and exposure constraints</subfield>
      <subfield code="c">Tim J. Boonen, Mario Ghossoub</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper studies bilateral risk sharing under no aggregate uncertainty, where one agent has Expected-Utility preferences and the other agent has Rankdependent utility preferences with a general probability distortion function. We impose exogenous constraints on the risk exposure for both agents, and we allow for any type or level of belief heterogeneity.We show that Pareto-optimal risk-sharing contracts can be obtained via a constrained utility maximization under a participation constraint of the other agent. This allows us to give an explicit characterization of optimal risk-sharing contracts. In particular, we show that an optimal risk-sharing contract contains allocations that are monotone functions of the likelihood ratio, where the latter is obtained from Lebesgue's Decomposition Theorem.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080616106</subfield>
      <subfield code="a">Cálculo de probabilidades</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080610319</subfield>
      <subfield code="a">Distribución de riesgos</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20210031915</subfield>
      <subfield code="a">Boonen, Tim J</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170005414</subfield>
      <subfield code="a">Ghossoub, Mario</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2020 Volumen 50 Número 1 - enero 2020 , p. 293-323</subfield>
    </datafield>
  </record>
</collection>