Búsqueda

Efficient nested simulation for conditional tail expectation of variable annuities

Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20200018087
003  MAP
005  20200602122748.0
008  200528e20200601usa|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20200012610‎$a‎Dang, Ou
24510‎$a‎Efficient nested simulation for conditional tail expectation of variable annuities‎$c‎Ou Dang, Mingbin Feng, Mary R. Hardy
520  ‎$a‎Monte Carlo simulationsin particular, nested Monte Carlo simulationsare commonly used in variable annuity (VA) risk modeling. However, the computational burden associated with nested simulations is substantial. We propose an Importance-Allocated Nested Simulation (IANS) method to reduce the computational burden, using a two-stage process. The first stage uses a low-cost analytic proxy to identify the tail scenarios most likely to contribute to the Conditional Tail Expectation risk measure. In the second stage we allocate the entire inner simulation computational budget to the scenarios identified in the first stage. Our numerical experiments show that, in the VA context, IANS can be up to 30 times more efficient than a standard Monte Carlo experiment, measured by relative mean squared errors, when both are given the same computational budget.
650 4‎$0‎MAPA20080608606‎$a‎Simulación Monte Carlo
650 4‎$0‎MAPA20080602642‎$a‎Modelos de simulación
650 4‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
650 4‎$0‎MAPA20080592042‎$a‎Modelos matemáticos
7001 ‎$0‎MAPA20200012658‎$a‎Feng, Mingbin
7001 ‎$0‎MAPA20080653552‎$a‎Hardy, Mary R.
7730 ‎$w‎MAP20077000239‎$t‎North American actuarial journal‎$d‎Schaumburg : Society of Actuaries, 1997-‎$x‎1092-0277‎$g‎01/06/2020 Tomo 24 Número 2 - 2020 , p. 187-210