Búsqueda

Universally marketable insurance under multivariate mixtures

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210005527</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20210223091250.0</controlfield>
    <controlfield tag="008">210218e20210101bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170007395</subfield>
      <subfield code="a">Lo, Ambrose</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Universally marketable insurance under multivariate mixtures</subfield>
      <subfield code="c">Ambrose Lo, Qihe Tang, Zhaofeng Tang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The study of desirable structural properties that define a marketable insurance contract has been a recurring theme in insurance economic theory and practice. In this article, we develop probabilistic and structural characterizations for insurance indemnities that are universally marketable in the sense that they appeal to all policyholders whose risk preferences respect the convex order. We begin with the univariate case where a given policyholder faces a single risk, then extend our results to the case where multiple risks possessing a certain dependence structure coexist. The non decreasing and 1-Lipschitz condition, in various forms, is shown to be intimately related to the notion of universal marketability. As the highlight of this article, we propose a multivariate mixture model which not only accommodates a host of dependence structures commonly encountered in practice but is also flexible enough to house a rich class of marketable indemnity schedules.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080584290</subfield>
      <subfield code="a">Contrato de seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080572396</subfield>
      <subfield code="a">Indemnizaciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080604721</subfield>
      <subfield code="a">Análisis multivariante</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080650421</subfield>
      <subfield code="a">Tang, Qihe</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210003103</subfield>
      <subfield code="a">Tang, Zhaofeng </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 221-243</subfield>
    </datafield>
  </record>
</collection>