Búsqueda

Weighted risk models for dynamic healthcare fraud detection

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210024320</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20210723085545.0</controlfield>
    <controlfield tag="008">210722e2021    esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20210030017</subfield>
      <subfield code="a">Rolfe, Alyssa J</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Weighted risk models for dynamic healthcare fraud detection</subfield>
      <subfield code="c">Alyssa J. Rolfe</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Despite efforts to prevent it, fraud in the United States healthcare system remains a serious and pressing issue. Since healthcare fraud is a complex and multi-faceted problem, fraud-fighting solutions must be flexible enough to address the ever-evolving nature of the crime. Here, we present a method to identify healthcare fraud in such a manner that incorporates both potential fraud as well as risky provider behavior. The proposed weighted risk model provides a framework for creating a dynamic fraud detection database that can be easily scaled up to incorporate emerging fraud schemes.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080539771</subfield>
      <subfield code="a">Salud</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080548124</subfield>
      <subfield code="a">Medicina</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080541064</subfield>
      <subfield code="a">Fraude</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20210011108</subfield>
      <subfield code="a">Riesgo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591052</subfield>
      <subfield code="a">Fraude en el seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080588953</subfield>
      <subfield code="a">Análisis de riesgos</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080638337</subfield>
      <subfield code="a">Estados Unidos</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077001748</subfield>
      <subfield code="t">Risk management & insurance review</subfield>
      <subfield code="d">Malden, MA : The American Risk and Insurance Association by Blackwell Publishing, 1999-</subfield>
      <subfield code="x">1098-1616</subfield>
      <subfield code="g">03/05/2021 Tomo 24 Número 2 - 2021 , p. 143-150</subfield>
    </datafield>
  </record>
</collection>