Búsqueda

Bridging the gap between risk and uncertainty in insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210028830</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220912143201.0</controlfield>
    <controlfield tag="008">211006e2021    esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">21</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080120566</subfield>
      <subfield code="a">Zweifel, Peter</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Bridging the gap between risk and uncertainty in insurance</subfield>
      <subfield code="c">Peter Zweifel</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This contribution evokes Orio Giarini 's courage to think 'outside the box '. It proposesa practica! way to bridge the gap between risk (where probabili ties of occurrence are fully known) and uncertainty (where these probabilities are unknown). However, in the context of insurance, neither extreme applies: the ri sk type of a newly enrolled customer is not fully known, loss di stributions (especially their tails) are difficult to estima.te with sufficient preci sion, the di versification properties of a block of policies acquired from another company can be assessed only to an approximation, and rates of return on investment depend 0 11 dec isions of central banks that cannot be predicted too well. This contri bution revolves around the launch of an innovative insurance product, where the company has a notion of whether a favorable market reception is more likely than an unfavourable one, of the chance of obtaining approval from the regulatory authority and the ri sk of a competitor launching a similar innovation. Linear partial information theory is proposed and appli ed as a particular practical way to systematically exploit the imprec ise information that may exist for ali of these aspects. The decision-making criterion is maxEmin, an intuitive rnodification of the maximin rule known from games against nature.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545338</subfield>
      <subfield code="a">Seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080598358</subfield>
      <subfield code="a">Productos de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080554866</subfield>
      <subfield code="a">Innovación</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100215</subfield>
      <subfield code="t">Geneva papers on risk and insurance : issues and practice</subfield>
      <subfield code="d">Geneva : The Geneva Association, 1976-</subfield>
      <subfield code="x">1018-5895</subfield>
      <subfield code="g">01/04/2021 Volumen 46 Número 2 - abril 2021 , p. 200-213</subfield>
    </datafield>
  </record>
</collection>