Búsqueda

Neighbouring prediction for mortality

Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20210029981
003  MAP
005  20211019090158.0
008  211019e20210913esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎7
100  ‎$0‎MAPA20110028886‎$a‎Wang, Chou-Wen
24510‎$a‎Neighbouring prediction for mortality‎$c‎Chou-Wen Wang, Jinggong Zhang, Wenjun Zhu
520  ‎$a‎We propose a new neighbouring prediction model for mortality forecasting. For each mortality rate at age x in year t, mx,t, we construct an image of neighbourhood mortality data around mx,t, that is, ?mx,t (x1, x2, s), which includes mortality information for ages in [x-x1, x+x2], lagging k years (1 = k = s). Combined with the deep learning model convolutional neural network, this framework is able to capture the intricate nonlinear structure in the mortality data: the neighbourhood effect, which can go beyond the directions of period, age, and cohort as in classic mortality models. By performing an extensive empirical analysis on all the 41 countries and regions in the Human Mortality Database, we find that the proposed models achieve superior forecasting performance. This framework can be further enhanced to capture the patterns and interactions between multiple populations.
650 4‎$0‎MAPA20080555016‎$a‎Longevidad
650 4‎$0‎MAPA20080555306‎$a‎Mortalidad
650 4‎$0‎MAPA20120011137‎$a‎Predicciones estadísticas
700  ‎$0‎MAPA20190008341‎$a‎Zhang, Jinggong
700  ‎$0‎MAPA20170005773‎$a‎Zhu, Wenjun
7730 ‎$w‎MAP20077000420‎$g‎13/09/2021 Volumen 51 Número 3 - septiembre 2021 , p. 689-718‎$x‎0515-0361‎$t‎Astin bulletin‎$d‎Belgium : ASTIN and AFIR Sections of the International Actuarial Association