Búsqueda

Applying ensemble neural networks to analyze industrial maintenance : Influence of Saharan dust transport on gas turbine axial compressor fouling

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210031342</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911185809.0</controlfield>
    <controlfield tag="008">211028e20211004esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.134</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Applying ensemble neural networks to analyze industrial maintenance</subfield>
      <subfield code="b">: Influence of Saharan dust transport on gas turbine axial compressor fouling</subfield>
      <subfield code="c">D. Gonzalez Calvo...[et.al]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The planning of industrial maintenance associated with the production of electricity is vital, as it yields a current and future snapshot of an industrial component in order to optimize the human, technical and economic resources of the installation. This study focuses on the degradation due to fouling of a gas turbine in the Canary Islands, and analyzes fouling levels over time based on the operating regime and local meteorological variables. In particular, we study the relationship between degradation and the suspended dust that originates in the Sahara Desert. To this end, we use a computational procedure that relies on a set of artificial neural networks to build an ensemble, using a cross-validated committees approach, to yield the compressor efficiency. The use of trained models makes it possible to know in advance how the local fouling of an industrial rotating component will evolve, which is useful for maintenance planning and for calculating the relative importance of the variables that make up the system

</subfield>
    </datafield>
    <datafield tag="540" ind1=" " ind2=" ">
      <subfield code="a">La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY NC 4.0)"</subfield>
      <subfield code="f"/>
      <subfield code="u">https://creativecommons.org/licenses/by-nc/4.0</subfield>
      <subfield code="9">64</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080549275</subfield>
      <subfield code="a">Turbinas</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="g">04/10/2021 Volumen 24 Número 68 - octubre 2021 , p. 53-71</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="q">application/pdf</subfield>
      <subfield code="w">901</subfield>
      <subfield code="y">Recurso electrónico / Electronic resource</subfield>
    </datafield>
  </record>
</collection>