Jesús Ramón Simón del Potro Curso 2020-2021. — Sumario: El análisis de la tasa de cross-selling es un tema de gran interés para todas las compañías y, más concretamente, para las aseguradoras. Conseguir una venta cruzada requiere de una dificultad mayor y el tipo de cliente que se genera, posee mayor lealdad y fidelidad hacia la compañía. La utilización de algoritmos de Machine Learning permite predecir la tasa de conversión de un cliente potencial a un cliente final, además de detectar qué tipo de factores son más determinantes para cerrar un cliente potencial. De esta forma, cuando se realiza una petición a un proveedor de bases de datos, en principio, se debería priorizar variables que aporten mayor importancia. Así, este Trabajo Fin de Máster se centra en el análisis de la tasa de cross-selling mediante la aplicación de algoritmos de Machine Learning
Predicción de Cross-selling con técnicas de Machine Learning
Jesús Ramón Simón del Potro Curso 2020-2021. — Sumario: El análisis de la tasa de cross-selling es un tema de gran interés para todas las compañías y, más concretamente, para las aseguradoras. Conseguir una venta cruzada requiere de una dificultad mayor y el tipo de cliente que se genera, posee mayor lealdad y fidelidad hacia la compañía. La utilización de algoritmos de Machine Learning permite predecir la tasa de conversión de un cliente potencial a un cliente final, además de detectar qué tipo de factores son más determinantes para cerrar un cliente potencial. De esta forma, cuando se realiza una petición a un proveedor de bases de datos, en principio, se debería priorizar variables que aporten mayor importancia. Así, este Trabajo Fin de Máster se centra en el análisis de la tasa de cross-selling mediante la aplicación de algoritmos de Machine Learning