Estudio de la longevidad aplicando redes neuronales artificiales
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cam a22000004b 4500</leader>
<controlfield tag="001">MAP20210035807</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911185739.0</controlfield>
<controlfield tag="008">211217s2021 esp|||| ||| ||spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20210037115</subfield>
<subfield code="a">Bautista Ramos, Susana</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Estudio de la longevidad aplicando redes neuronales artificiales</subfield>
<subfield code="c">Susana Bautista Ramos</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">Madrid</subfield>
<subfield code="b">Universidad Carlos III de Madrid</subfield>
<subfield code="c">2021</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">79 p.</subfield>
</datafield>
<datafield tag="500" ind1=" " ind2=" ">
<subfield code="a">Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutores: José Miguel Rodríguez Pardo del Castillo, Jesús Ramón Simón del Potro Curso 2020-2021</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Uno de los riesgos asociados a la vida humana que más interés despierta en el campo actuarial es el estudio del riesgo de longevidad. Este riesgo se define como la probabilidad de que las personas puedan sobrevivir más allá de lo esperado, generando una creciente preocupación en el mercado asegurador del negocio de seguros de vida debido a la posibilidad de la subestimación de las reservas, lo cual implica un riesgo de déficit de recursos financieros para cumplir las obligaciones de pago futuras. Una forma de mitigación de este tipo de riesgos es la proyección de la mortalidad de la población a nivel país, permitiendo al país o población asegurada estructurar sus planes de pensiones, o sirviendo de asistencia a las entidades aseguradoras en procesos de pricing o reserving. A lo largo del tiempo se han desarrollado diferentes técnicas y modelos orientados a la predicción de la mortalidad. Entre ellos se encuentran modelos paramétricos, como los conocidos modelos clásicos o modelos no paramétricos como el modelo de P-splines. El desarrollo de técnicas más avanzadas, como las basadas en la Inteligencia Artificial, han permitido un estudio de la longevidad desde un nuevo paradigma, el cual podría dar lugar al nacimiento de modelos que arrojen una predicción más precisa que la aportada por los métodos hasta ahora utilizados. Una de estas técnicas es la desarrollada en el presente trabajo, basada en el estudio de la longevidad utilizando Redes Neuronales Artificiales (RNA). Las RNA cuentan con una base matemática compleja, así como un conjunto de parametrizaciones como el número de neuronas en cada capa, tipo de aprendizaje, funciones de activación etc, que hacen que la estimación de dichos paramétros se basen en procesos de prueba y error</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555016</subfield>
<subfield code="a">Longevidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20090041776</subfield>
<subfield code="a">Análisis actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080624842</subfield>
<subfield code="a">Redes neuronales artificiales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20210037153</subfield>
<subfield code="a">Modelos paramétricos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611200</subfield>
<subfield code="a">Inteligencia artificial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20130017037</subfield>
<subfield code="a">Análisis predictivos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080664510</subfield>
<subfield code="a">Trabajos de investigación</subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20080455026</subfield>
<subfield code="a">Universidad Carlos III de Madrid</subfield>
</datafield>
<datafield tag="830" ind1=" " ind2="0">
<subfield code="0">MAPA20160014013</subfield>
<subfield code="a">Trabajos Fin de Master</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="q">application/pdf</subfield>
<subfield code="w">1113086</subfield>
<subfield code="y">Recurso electrónico / Electronic resource</subfield>
</datafield>
</record>
</collection>