Búsqueda

Modeling lapse rates using machine learning : a comparison between Survival Forests and Cox Proportional Hazards techniques

Modeling lapse rates using machine learning : a comparison between Survival Forests and Cox Proportional Hazards techniques
Recurso electrónico / Electronic resource
Sección: Artículos
Título: Modeling lapse rates using machine learning : a comparison between Survival Forests and Cox Proportional Hazards techniques / Jorge Luis Andrade, José Luis ValenciaAutor: Andrade, Jorge Luis
Notas: Sumario: This study undertakes a comparative analysis of the performance of machine learning and traditional survival analysis techniques in the insurance industry. The techniques compared are the traditional Cox Proportional Hazards (CPH), Random Survival Forests (RSF) and Conditional Inference Forests (CIF) machine learning models. These techniques are applied in a case study of insurance portfolio of one of Ecuador's largest insurer. This study demonstrates how machine learning techniques perform better in predicting survival function measured by the C-index and Brier Score. It also demonstrates that the predictive contribution of covariates in the RSF model is consistent with the traditional CPH modelRegistros relacionados: En: Anales del Instituto de Actuarios Españoles : Colegio Profesional. - Madrid : Instituto de Actuarios Españoles, 1943-. - 29/12/2021 Número 27 - Epoca 4ª, Año 2021 , p. 161-183Materia / lugar / evento: Análisis actuarial Machine learning Modelos de supervivencia Análisis comparativo Cartera de seguros Análisis predictivos Otros autores: Valencia, José Luis
Instituto de Actuarios Españoles
Otras clasificaciones: 6
Derechos: La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY 4.0)"
Ver detalle del número